A New Authentic Cloud Dataset from a Production Facility for Anomaly Detection

Publikation: Bidrag til bog/antologi/rapportKonferenceartikel i proceedingForskningpeer review

Abstract

As technology advances and modern Industry 4.0 solutions are becoming more widespread, the need for better-suited datasets is rising. The commonly used datasets for training machine learning focus on simple data of often publicly available information. Within the industry, there is only a handful of datasets publicly available to use. In this paper, we present a new authentic industrial cloud data (AICD) dataset collected from an actual operating pick-and-place machine handling items with variations in shape, size, and weight. The AICD dataset contains various analogue sensor values and states of the machine, collected from an existing cloud solution. Within the data, an error is present when the machine fails. Therefore, this dataset is suited for testing and developing predictive maintenance and anomaly detection algorithms to be used in the industry. Moreover, the paper also presents a baseline implementation as a performance indicator for future models.
OriginalsprogEngelsk
Titel8th Changeable, Agile, Reconfigurable and Virtual Production Conference (CARV2021)
ForlagSpringer
StatusAfsendt - 2021

Citationsformater