Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

Hanne Leirbekk Mjøsund, Eleanor Boyle, Per Kjaer, Rune Mygind Mieritz, Tue Skallgård, Peter Kent

Publikation: Bidrag til tidsskriftTidsskriftsartikelForskningpeer review


BACKGROUND: Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system.

METHODS: To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method.

RESULTS: We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination.

CONCLUSIONS: We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system's ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects.

TidsskriftBMC Musculoskeletal Disorders
Udgave nummer1
Sider (fra-til)124
StatusUdgivet - 21 mar. 2017
Udgivet eksterntJa


  • Assessment
  • Bland Altman method
  • DorsaVi
  • Lumbar spine
  • Movement measurement
  • Validity