Projekter pr. år
Abstract
Predictive maintenance normally uses machine learning to learn from existing data to find patterns that can assist in predicting equipment failures in advance. Predictive maintenance maximizes equipment's lifespan by monitoring its condition thus reducing unplanned downtime and repair cost while increasing efficiency and overall productive capacity. This paper first presents the machine learning based methods to predict unplanned failures before they occur. Afterwards, to confront the everlasting downtime problem, it discusses anomaly detection in greater detail. It also explains the selection criteria of these methods. In addition, the techniques presented in this paper have been tested by using well-known data-sets with promising results.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 3rd International Conference on Innovative Intelligent Industrial Production and Logistics, IN4PL 2022 |
Redaktører | Herve Panetto, Georg Weichhart, Alexander Smirnov, Kurosh Madani |
Antal sider | 9 |
Forlag | SCITEPRESS Digital Library |
Publikationsdato | 2022 |
Sider | 85-93 |
ISBN (Elektronisk) | 978-989-758-612-5 |
DOI | |
Status | Udgivet - 2022 |
Begivenhed | IN4PL 2022:: 3rd International Conference on Innovative Intelligent Industrial Production and Logistics - Valletta, Malta Varighed: 24 okt. 2022 → 26 okt. 2022 Konferencens nummer: 3 https://in4pl.scitevents.org/ https://in4pl.scitevents.org/?y=2022 |
Konference
Konference | IN4PL 2022: |
---|---|
Nummer | 3 |
Land/Område | Malta |
By | Valletta |
Periode | 24/10/22 → 26/10/22 |
Andet | Hybrid conference |
Internetadresse |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Machine Learning based Predictive Maintenance in Manufacturing Industry'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
Production Data Analytics
Iftikhar, N. (Projektleder), Nordbjerg, F. E. (Projektleder), Hvarregaard, B. (Projektdeltager) & Jeppesen, K. (Projektdeltager)
01/09/18 → …
Projekter: Projekt › Forskning