Machine Learning based Predictive Maintenance in Manufacturing Industry

Publikation: Bidrag til bog/antologi/rapportKonferenceartikel i proceedingpeer review

Abstract

Predictive maintenance normally uses machine learning to learn from existing data to find patterns that can assist in predicting equipment failures in advance. Predictive maintenance maximizes equipment's lifespan by monitoring its condition thus reducing unplanned downtime and repair cost while increasing efficiency and overall productive capacity. This paper first presents the machine learning based methods to predict unplanned failures before they occur. Afterwards, to confront the everlasting downtime problem, it discusses anomaly detection in greater detail. It also explains the selection criteria of these methods. In addition, the techniques presented in this paper have been tested by using well-known data-sets with promising results.
OriginalsprogEngelsk
TitelProceedings of the 3rd International Conference on Innovative Intelligent Industrial Production and Logistics, IN4PL 2022
RedaktørerHerve Panetto, Georg Weichhart, Alexander Smirnov, Kurosh Madani
Antal sider9
ForlagSCITEPRESS Digital Library
Publikationsdato2022
Sider85-93
ISBN (Elektronisk)978-989-758-612-5
DOI
StatusUdgivet - 2022
BegivenhedIN4PL 2022:: 3rd International Conference on Innovative Intelligent Industrial Production and Logistics - Valletta, Malta
Varighed: 24 okt. 202226 okt. 2022
Konferencens nummer: 3
https://in4pl.scitevents.org/
https://in4pl.scitevents.org/?y=2022

Konference

KonferenceIN4PL 2022:
Nummer3
Land/OmrådeMalta
ByValletta
Periode24/10/2226/10/22
AndetHybrid conference
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Machine Learning based Predictive Maintenance in Manufacturing Industry'. Sammen danner de et unikt fingeraftryk.

Citationsformater