Projekter pr. år
Abstract
Smart manufacturing technologies (Industry 4.0) as solutions to enhance productivity and improve efficiency are a priority to manufacturing industries worldwide. Such solutions have the ability to extract, integrate, analyze and visualize sensor and data from other legacy systems in order to enhance the operational performance. This paper proposes a solution to the challenge of real-time analysis and visualization of sensor and ERP data. Dynamic visualization is achieved using a machine learning approach. The combination of real-time visualization and machine learning allows for early detection and prevention of undesirable situations or outcomes. The prototype system has so far been tested by a smart manufacturing company with promising results.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the 9th International Conference on Data Science, Technology and Applications - Volume 1: DATA |
Redaktører | Slimane Hammoudi, Christoph Quix, Jorge Bernardino |
Antal sider | 8 |
Vol/bind | 1 |
Forlag | SCITEPRESS Digital Library |
Publikationsdato | 2020 |
Sider | 215-222 |
ISBN (Elektronisk) | 978-989-758-440-4 |
DOI | |
Status | Udgivet - 2020 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Real-time Visualization of Sensor Data in Smart Manufacturing using Lambda Architecture'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
Production Data Analytics
Iftikhar, N. (Projektleder), Nordbjerg, F. E. (Projektleder), Hvarregaard, B. (Projektdeltager) & Jeppesen, K. (Projektdeltager)
01/09/18 → …
Projekter: Projekt › Forskning