Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers

Lise Lolle Holm, Thomas Koed Doktor, Michael Birkerod Hansen, Ulrika Simone Spangsberg Petersen, Brage Storstein Andresen

Publikation: Bidrag til tidsskriftTidsskriftsartikelForskningpeer review

Abstract

It is now widely accepted that aberrant splicing of constitutive exons is often caused by mutations affecting cis-acting splicing regulatory elements, but there is a misconception that all exons have an equal dependency on splicing regulatory elements and thus a similar susceptibility to aberrant splicing. We investigated exonic mutations in ACADM exon 5 to experimentally examine their effect on splicing and found that 7 out of 11 tested mutations affected exon inclusion, demonstrating that this constitutive exon is particularly vulnerable to exonic splicing mutations. Employing ACADM exon 5 and 6 as models, we demonstrate that the balance between splicing enhancers and silencers, flanking intron length, and flanking splice site strength are important factors that determine exon definition and splicing efficiency of the exon in question. Our study shows that two constitutive exons in ACADM have different inherent vulnerabilities to exonic splicing mutations. This suggests that in silico prediction of potential pathogenic effects on splicing from exonic mutations may be improved by also considering the inherent vulnerability of the exon. Moreover, we show that single nucleotide polymorphism that affect either of two different exonic splicing silencers, located far apart in exon 5, all protect against both immediately flanking and more distant exonic splicing mutations.

OriginalsprogEngelsk
TidsskriftHuman Mutation
Vol/bind43
Udgave nummer2
Sider (fra-til)253-265
Antal sider13
ISSN1059-7794
DOI
StatusUdgivet - feb. 2022
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers'. Sammen danner de et unikt fingeraftryk.

Citationsformater