Interplay of entrepreneurial learning forms
a case study of experiential learning settings
Ramsgaard, Michael Breum; Christensen, Marie Ernst

Published in:
Innovations in Education and Teaching International (Print)

DOI:
10.1080/14703297.2016.1228468

Publication date:
2018

Document Version
Post-print: The final version of the article, which has been accepted, amended and reviewed by the publisher, but without the publisher's layout.

Link to publication

Citation for published version (APA):
Interplay of entrepreneurial learning forms: a case study of experiential learning settings

Michael Breum Ramsgaard & Marie Ernst Christensen

To cite this article: Michael Breum Ramsgaard & Marie Ernst Christensen (2016): Interplay of entrepreneurial learning forms: a case study of experiential learning settings, Innovations in Education and Teaching International, DOI: 10.1080/14703297.2016.1228468

To link to this article: http://dx.doi.org/10.1080/14703297.2016.1228468

Published online: 31 Aug 2016.
Interplay of entrepreneurial learning forms: a case study of experiential learning settings

Michael Breum Ramsgaard and Marie Ernst Christensen

Faculty of Health Sciences, VIA University College, Aarhus, Denmark

ABSTRACT
This paper explores the concept of learning in a setting of experiential knowledge acquisition. The main focus is how facilitators of learning processes can design learning spaces, where the boundaries of what is expected from the learner are challenged. The aim is to explore the action-based learning processes occurring in experiential learning settings and curriculum development. The case study explores a course in innovation and project management at a university of applied science, and the main data are derived from four focus groups with students. Five different pedagogical learning activities from the course were investigated to provide legitimacy to the implications for entrepreneurship education. The study identified two core themes describing the participants’ beliefs and perceptions about the ideal learning environment. Within these core themes, findings suggested five categories relevant to experiential learning settings.

Introduction

The notion of teaching about, for or through entrepreneurship education has long been seen as a valid pathway when designing programmes and courses (Hannon, 2005). However, just how it should be taught is a question that is barely beginning to be explored. As a result, novel ways of developing students’ mindsets, behaviours, skills and capabilities are important in order to move the pedagogical aspect of entrepreneurship education forward (Henry, Hill, & Leitch, 2005). Students in entrepreneurship programmes need to develop a wide range of practical and conceptual skills in order to deal with the complexities of the entrepreneurial learning process (Gibb, 2002). A way of integrating these novel approaches in entrepreneurship education is through experiential learning (Corbett, 2005) and action-based learning (Austin & Hjorth, 2012). Even though many have tried to provide the field with practical guides and recommendations as to which learning forms are effective and which are less so (Carrier, 2007), there is still little evidence on the impact and facilitation of teaching methods.

Chang and Rieple (2013) argued that entrepreneurial skills can be improved by providing a learning environment in which students interact with professionals on real-life projects. Taking this into account, Chang and Rieple (2013) also suggested incorporating structured and scheduled programmes of skills training in such courses, a rare practice in experiential learning (Pittaway & Cope, 2007; Pittaway & Thorpe, 2012). Politis (2005) and others has shown that the process of entrepreneurial learning can be viewed as an experiential process (Fayolle & Gailly, 2012; Politis, 2005); why it seems important to research which specific teaching activities enhance learning outcomes and, subsequently,
how this can be used to design and develop entrepreneurship education programmes (Warhuus & Basalawmoit, 2014). The current study explores the learning processes in a course design including various experiential learning forms.

Action-based and experiential approaches

Many scholars have researched learning-by-doing activities (Cope & Watts, 2000; Rasmussen & Sørheim, 2006). The constructivist school in particular has developed such an approach within entrepreneurship education. Universities tend to embrace a wide variety of pedagogical approaches, when designing entrepreneurship courses, but several reviews show a considerable diversity in objectives, content, pedagogics and outcomes (Fayolle & Gailly, 2012; Pittaway & Cope, 2007; Samwel Mwasalwiba, 2010). Moreover, identifying teaching methods that engage students can be difficult (Balan & Metcalfe, 2012); and it should be considered whether such methods are applicable to the context of universities of applied science (Kettunen, 2011).

When working in action-based entrepreneurship education Austin and Hjorth (2012) dealt with two broad approaches: experience-based (inductive) and explanation-based (deductive). The experience-based approach includes contextually rich cases and project work, discussion and collaboration with practitioners, whereas the explanation-based employ textbooks, compendia and literature readings (Austin & Hjorth, 2012). A key challenge is to keep the students engaged in all parts of a course (Foss, Oftedal, & Iakovleva, 2013), which in the context of this paper leads to approaches that also take the individual learner’s perspective or identity development into account (Nielsen & Lassen, 2012).

The theoretical framework of Kolb’s learning theory (Kolb, 1984) supports the ideas that experience acquisition and transformation are vital to all learning processes (Kolb & Kolb, 2005) and that individuals learn mainly through experience, reflection, thought and experimentation (Illeris, 2014). This leads to the thought that in our present investigation of a learning process developing over time, many different learning forms need to be considered because one must assume that different methods of learning will occur during the process (Cope & Watts, 2000; Illeris, 2004). Taking the point of departure in the approaches mentioned above, the aim of this paper is to explore entrepreneurship education focusing on transformative learning processes integral to experiential learning settings. The following research questions will be investigated: (1) How can educators design learning processes that combine experience-based and explanation-based approaches in order to maintain strong engagement amongst students? (2) How can educators facilitate pedagogical learning activities in an experiential learning process in which the students take responsibility for learning?

Case

Fifty health science students participated in a 10-week course in innovation and project management. The course was structured with an on-campus kick-off innovation camp (Bager, 2011) in which teams of five students worked for two days to create solutions and concepts for external partners. The two days were planned using divergent and convergent creative methods (Corbett, 2005; Shaheen, 2010) to help the students through the processes.

Following the innovation camp, a number of course-specific lectures in project management, innovation, social intervention and product development provided the conceptual baseline for explanation-based knowledge in the course design. As a follow-up to the innovation camp, in one part of the course (project management), students worked to develop externally formulated projects which, after six weeks, were handed over and presented to the project owner and subsequently described in a final exam paper. The module was evaluated by an external examiner using an individual, case-based oral examination.
The study is designed as a qualitative study using focus groups to explore students’ beliefs and perspectives on the design of learning processes and the factors related to the experience-based and explanation-based learning approaches (Frey & Fontana, 1991; Halkier, 2010). Four focus groups were conducted and the student sample was recruited using a typical case sample method, meaning that the largest possible representation from the 16 work teams was aimed for (Coyne, 1997). Each of the interviews involved six to nine students and took place during the fifth week of the course. The focus groups were held by the two researchers in central campus meeting rooms, in collaboration with an observer. Written information and consent forms were provided prior to the focus groups to allow the students’ time to consider their participation. Before each focus group commenced, the moderator (the researcher) introduced the purpose of the interview, clarified its guidelines and its focus.

A semi-structured interview guide was compiled. The guide’s theme focused on the students’ experiences, which formed the basis of the discussion (Brinkmann & Kvale, 2014; Spradley, 1979). Some additional questions were asked during the discussion. The observer made notes during the interviews, and evaluated the atmosphere and the interaction. Each focus group lasted approximately 60 minutes, and was audio-recorded and transcribed verbatim.

Analysis
Data were analysed by systematic text condensation (STC), which is a descriptive and explorative method used in the analysis of qualitative data (Malterud, 2012).

In accordance with the method of SCT, researchers began by reading the transcripts, annotated them with initial thoughts and achieved an overall impression of data. The transcriptions were read once again, and meaningful units were identified and condensed. Thirdly, the condensations were coded, and finally, the findings were synthesised, which involved a shift from coding to overall categories (Figure 1). In order to optimise validation, both researchers were involved in the analytical process.

With an outset in the inductive approach, the empirical data have guided the analysis. From the theoretical review, two main topics within the action-based approach have contributed to an understanding of the interplay of entrepreneurial learning forms. Explanation-based and experience-based learning and teaching approaches are used as a guiding structure in the results and the discussion.

Results
The findings are structured around Hjorth and Austin’s distinction between experience-based and explanation-based teaching and learning. The two core themes described the participants’ beliefs and perceptions of the ideal learning environment. Within each core theme, five categories were identified: real life, work methods, learning environments, teacher roles and employability.

Explanation-based
The first core theme related to explanation-based learning and teaching approaches refers to the theoretical content supported by already-existing frameworks.
Real life
All students highlighted the importance and value of teachers being able to provide professional examples from previous work experiences and being able to show the connection between theoretical elements and practical knowledge. Furthermore, the students emphasised the ability to transfer knowledge and concepts from lectures and guidance sessions towards teamwork in real-life cases and problems. The examination was described as a motivational factor, as it resembles realistic health challenges and situations relevant to the profession:

For me the driver is the exam. It is not so much my subjects in this course, but the exam drives me because I want to do well. (Health Science student, female)

Work methods
The majority of the students found it difficult to maintain an overview of the many different models used throughout the course. One student expressed that this practice sometimes felt like name-dropping and that some of the models were explained superficially. However, most models helped to create flow in the project and to develop the teams’ analyses and overviews. The students indicated which of the work methods in the explanation-based portion had the greatest impact on their learning. They all responded that a didactical variation from the facilitators between lecture-based and team-based sessions was an important factor:

I think the lectures are important. You quickly lag behind in the teamwork, if you do not participate. I liked that there was time during the lectures to work in teams. (Health Science student, female)

Learning environment
Some students articulated that listening to a lecture is a very passive form of learning. Another student reflected on this:

The setting of the lectures allows for a passive role. I learn better when the lecture involves me. (Health Science student, male)

The students also dwelt on the combination of lectures and the supplied literature, which they saw as important factors to have in mind. They emphasised the need for agreement between what is highlighted in the suggested literature and in the theoretical lectures:

The literature provides a theoretical foundation. The lectures also give the same kind of foundation. (Health Science student, female)

Teacher roles
The representation of the teachers’ role was that of a lecturer in the traditional sense:

They are engaged, and that is important. The book hasn’t been opened yet because all knowledge has come from their lectures (Health Science student, female).

Nonetheless, the students expected the teacher to be a supervisor, as this function is an integral part of lectures and teaching sessions. One comment highlighted the ability to talk to the teachers during breaks or via email:

Working with someone who is more experienced in projects and idea-work than us is important. Sometimes we just need approval and feedback to go on with our ideas. (Health Science student, female)

Employability
Reporting on the more longitudinal impact of the learning going on, the students broadly stated a clear understanding of the meaning and usefulness of the various pedagogical learning activities:

We can relate to this in the real world in a controlled learning setup. It makes you feel better equipped that you have both theoretical and practical knowledge. (Health Science student, female)
In particular, having a shared understanding with stakeholders seems vital to all students:

It is good that we are forced to deliver, so that we actually understand what the project owner is talking about when saying ‘stakeholder analysis’ or ‘target groups’. (Health Science student, female)

Experience-based

The second theme related to experience-based learning and teaching approaches, including pedagogical learning activities that either inform the students’ beliefs about designing learning environments that maintain strong engagement or affect such environments’ ability to provide strong engagement.

Real life

The students highlight the importance of working with real-life cases and emphasise that responsibility and the fact that their projects would actually be implemented and taken seriously are important motivational factors:

They loved our idea, and now we are invited to plan and implement their very first event. We become extremely motivated by it. (Health Science student, female)

Feedback from the external professional: now you are a part of us. We are working with something they can actually use. That certainly boosts our motivation. (Health Science student, female)

The students described feedback as a central factor in committing to the project and getting acknowledgement that they were on the right track with their projects. The students stated that feedback was essential to their learning processes. The enormous diversity in the real-life cases reflects the variety of the students’ future job opportunities, which is also seen as a positive factor. One student highlighted that negative feedback can contribute to learning just as well as positive feedback:

Our project-owner was really not satisfied. There was so much learning in returning [to Campus] and finding a new way forward. (Health Science student, male)

Work methods

The students experienced diverse reactions to working methods. Some of the students reported positive experiences; idea generation and brainstorming were mentioned as especially useful methods throughout the course. Negative experiences were also revealed, and some students mentioned that creativity can be tough to achieve, when it is not a part of their identities. They simply felt uncomfortable with the different working methods:

It was hard because it was unfamiliar with the concept. I have a self-perception of not being creative, so I felt I was in an unfamiliar learning environment. (Health Science student, female)

Awareness of one’s behavioural profile contributed to acceptance of the different and challenging working methods, and led to a greater tolerance of the team members.

Learning environment

All students articulated positively about the alternative learning environment. The setting played an important role in the students’ ability to feel free to generate ideas, and the cosy setting made them feel safe and relaxed. Some of the students conveyed that they felt pressure in the innovation camp, but that they learned a lot because they actually accomplished much more than they believed they could:

The innovations camp was super! At first I thought it probably would be some long days, but you got to know yourself and your team much better. (Health Science student, female)

Teacher roles

The students highlighted engagement as a crucial factor in this part of the learning process. One student describes how, during the innovation camp, teachers acted as facilitators:
We did not see you as lecturers, but I also think that was the whole point. You acted more as facilitators or guides. (Health Science student, female)

It seems essential that the teachers are able to provide positive or negative feedback, and that the teachers are available for guidance either by email or in their offices.

Employability

Professional knowledge about working in the field enables students to provide the right amount of professional expertise to project owners:

- We are taken seriously and considered equal partners, and we feel competent. (Health Science student, male)

Creating a project that can actually be implemented after the course is completed was important to the students:

- I enjoyed working with real people who expected a product. (Health Science student, female)

Discussion

Experiential learning processes in entrepreneurship education can include many pedagogical learning activities that are meant to facilitate learning amongst students (Krueger, 2007).

On the basis of the current project, in which a base of 50 students attended a 10-week course that included topics such as project management, innovation and social intervention, all mediated with a high variation in teaching methods, work methods and teamwork, several important pedagogical learning activities were identified.

Recounting the students’ experiences with explanation-based and experience-based teaching and learning, we are especially curious about the combination of the two parameters.

When looking at real-life projects as an element in experiential learning, the analysis showed that such projects, with a professional sponsor, seemed to heighten the students’ motivation. Chang and Rieple (2013) support this finding and furthermore add that engagement and learning are additional benefits. Interestingly, students in the study reported that feedback from the project owner was a major motivational factor, and in instances where this was not prioritised, motivation decreased significantly. Feedback that was critical and constructive seemed to contribute to increased learning, even though it required extra effort. This is similar to findings by Cope (2011), which showed that recovery and re-emergence from failure is a function of distinctive learning processes. In particular, one team in the course experienced this phenomenon, when it had to change its entire concept in the middle of the course as a result of feedback from the external project owner.

Data described the students’ abilities to reflect on their learning. Reflections on both evaluative points were highly relevant, but more interestingly, reflections on their own and their peers’ learning processes were also relevant. Other projects have also explored the perceived value of reflection in entrepreneurship education in similar ways (Kirkwood, Dwyer, & Gray, 2014). Increased confidence, insights into the feasibility of ideas, knowledge about reality, and solutions to practical problems were some of the major outcomes.

One key question that still puzzles scholars of entrepreneurship education is assessment practice. The results showed that some students thought of the exam as a motivating factor, but that others engaged in projects and in teamwork in order to have as much contact with the professional field as possible. However, assessment often seems to be a vital part of quality assurance in higher education (Honig, 2004), and new and innovative ways of assessing learning outcomes in these experiential processes may need to be developed (Pittaway, Hannon, Gibb, & Thompson, 2009; Yorke, 2011).

Employability was also highlighted in several statements in the focus groups. Timing in an experiential course like this supports the students’ abilities to reflect on future job opportunities (Crayford, Fearon, McLaughlin, & van Vuuren, 2012; Rae, 2007). Another perspective on employability is professional identity development, in which experiential courses can be the point of departure for reflections and discussions amongst students about their future professional roles (Slay & Smith, 2011).
When selecting approaches and methods in designing courses and curricula, entrepreneurship educators might lean towards either explanation-based or experience-based methods. For instance, the explanation-based approach allows the teacher to serve as a lecturer while the other form allows the teacher to have a more facilitating teaching approach.

Findings from the present study showed that whenever students found themselves exploring one aspect of the experience-based learning approach, they consistently articulated an urge to also use work methods from the other aspect of the approach or to establish learning environments that challenged the reigning approach. This is illustrated in Figure 2. For instance, one team of students organised their own miniature innovation camp during a weekend at home in order to use idea-generating work methods that were lacking in the lectures.

This study identified a reverse flow. Whenever an educator tries to establish a didactical element in one approach, the missing link might be a constituting learning form in the other aspect of the model. This could lead to a new development in experiential learning, in which educators actually experiment when designing courses, so that some aspects are not predicted in advance and can instead be developed as the course progresses.

Creating a common language, like in the explanation-based approach, could be accomplished with the supplied literature, which is expected to provide a shared language of key terms. If failing to provide this common language, literature can be found inconsistent or invalid as a frame of reference. On the other hand, a common language can also be found in real-life cooperation or derive from the project owner’s expectations, which would help the students get a shared understanding in that relationship.

It can be hard to grasp the essential outcomes of learning processes (Haber-Curran & Tillapaugh, 2015; Nohl, 2015). In terms of the overall aim to decipher which activities lead to engagement in the entrepreneurship process, it can be difficult to pinpoint specifically what pedagogical learning activities are most important – a problem that others have dealt with previously (Segal, Schoenfeld, & Borgia, 2007). Segal and Schoenfeld showed that simulation and lecturing ranked as the lowest elements when investigating students' self-efficacy, and the outcomes of learning processes. The finding was that real-life experiences lead to higher engagement in the learning process.

This discussion leads to propose the above model, in which an interplay of learning forms contributes to a forward-moving process of designing courses and curricula. In this relationship, an ongoing linkage of the explanation-based and experience-based styles of entrepreneurship teaching and learning seems vital. With Kolb’s (1984) learning model in mind, the above illustration exemplifies how the learning cycle can be viewed in an entrepreneurship education setting.

Limitations

Limitations of the study include that data are generated from a relatively small sample size and that the focus groups took place in the middle of the course. Data collected after the project period would
have given even more extensive insight into the students’ experiences, opinions and attitudes towards the course. Moreover, findings are based on one case study only, which has an impact on the validity of the study. Another possible limitation relates to the dual role of the researchers serving both as researchers and teachers in the course.

Conclusion

Findings in this study indicate that the presented course structure and organisation of entrepreneurship education have generated strong commitment. The students in the sample generally agreed on the importance and prioritisation of learning activities mixing between experience-based and explanation-based approaches. In addition, working with real-life projects in both approaches was seen as vital to the learning process.

The current study revealed new findings on the importance of varying and combining approaches to creating a better link between knowledge and experience as well as to providing legitimacy for the process. This paper uncovers a wider representation of the experiences involved in combining explanation-based and experience-based approaches to foster engagement. With contemporary learning theory in mind, the present study advances understanding of action-based learning processes, emphasising that the link between learning outcomes and facilitated activities should not be taken for granted. Moreover, this case study advances theory and knowledge of experiential learning processes in higher education, a momentum that corresponds well with new developments in transformative learning theory.

Based on this study, further research should highlight a more thorough perspective on the complexities of learning processes in experiential settings. It would be interesting to investigate the key learning outcomes that can result from each entrepreneurial learning activity in a course programme. The question of whether each element provides both explanation-based and experience-based impacts, or if it primarily contributes with one effect, could be a topic of future research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Michael Breum Ramsgaard, MA (education) is a senior lecturer at Faculty of Health Sciences, VIA University College, Aarhus, Denmark. He coordinates modules in Project Management, Innovation and Leadership in the Bachelor Degree Programme in Nutrition and Health. His research interests are entrepreneurship education, innovation management and entrepreneurial leadership.

Marie Ernst Christensen, MSc (public health) is a senior lecturer at Faculty of Health Sciences, VIA University College, Aarhus, Denmark. She coordinates modules in Project Management, Innovation and Interventions in the Bachelor Degree Programme in Nutrition and Health. Her research interests are rehabilitation, health promotion and entrepreneurship education.

ORCID

[Michael Breum Ramsgaard](http://orcid.org/0000-0002-5753-9651)

[Marie Ernst Christensen](http://orcid.org/0000-0002-3520-4033)

References

