Danish University Colleges

Comparison of STIR and T2 FAT SAT in bone bruise imaging for occult scaphoid fracture

Meincke, Louise; Radev, Dimitar; Lauridsen, Carsten Ammitzbøl

Publication date: 2015

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 04. mar., 2018
Introduction
Since the introduction of magnetic resonance imaging (MRI), the use of high-field-strength MRI in musculoskeletal imaging has become more common. The benefits of MRI are shown as a desirable method in the diagnostics of occult scaphoid fracture in particular the visualization of bone bruise (1). Different fat suppression sequences with different backgrounds can detect the presence of bone bruise e.g. Short tau inversion recovery (STIR), Spectral fat saturation (FAT SAT), Hybrid, Fat – water separation and Dixon (2). However, a majority of published articles describes the standard method for musculoskeletal MRI fat suppression comprising the STIR or T2 FAT SAT sequence, but no unified guidelines is described. Sufficient choice of sequence may result in consequences for the patient as pseudoarthrosis, osteoarthrosis, avascular necrosis and chronic wrist pain, if a fracture remains undiagnosed (3,4).

The importance of identifying and locating bone bruise is essential in relation to fracture but in addition, bone bruise may also be the only pathological finding explaining the patients symptoms of pain. This highlights the importance of the technicians awareness of the advantages and disadvantages affiliated with the various sequences (3,4).

Methods
In the period March 2014 until January 2015 195 patients underwent MRI examinations of the scaphoid bone. Fifty-one patients (average: 19 years, M: 40, F:11) met the inclusion criteria's.

Inclusion criteria for acute MRI scan of scaphoid bone

- Relevant trauma less than 2 weeks
- Negative X ray of scaphoid bone
- Positive clinical finding
- Age > 10 years
- Bone bruise on coronal STIR and sagittal T2 FAT SAT
- Motion artifact free sagittal T2 FAT SAT and STIR images

The fifty-one recruited patients underwent an additional sagittal STIR Sequence scan. The sagittal T2 FAT SAT and STIR were then compared and evaluated.

Imaging Technique

The MRI scans were performed on a 1.5 T extremity scanner (GE Healthcare Systems, ©Optima MR430s, 4.02 software release, Milwaukee, WI, USA), a 123 mm quadrature coil was used.

Parameter settings:

- A) 1.5 T extremity scanner (GE Healthcare Systems, ©Optima MR430s. The extremity MRI allowed the central placement of the hand relative to the magnetic field. The patient’s hand was placed in the Anterior-Posterior position.
- B) Placement of the middle slice (#6). A team of experienced radiographers ensured every scan to be executed identical. Otherwise excluded.

Aim of the study

To investigate differences between STIR and T2 FAT SAT in detection of bone bruise in a prospective study.

Results

There was no significant variation relative to the area of the bone bruise (p > 0.005) and the CNR (p > 0.005).

There was a significant variation relative image contrast (C) (p < 0.005).

The PCC showed that the agreement of the tendon scores revealed a positive correlation.

- There was considered high correlation: 0 was considered as no correlation and -1 as total negative.

Image contrast = (Sa - Sb)/(Sa+Sb) (6)

References


2. Available from: http://www.hospitalsenheden.horsens.dk

3. The study was presented on the ESSR Congress 2015, York, UK. An abstract of the presentation

4. Theoretically a high field strength MRI have resulted in a higher signal to noise ratio (SNR) as well as a wider chemical shift between the fat and water signals.

5. The high-field-strength MRI have resulted in a higher signal to noise ratio (SNR) as well as a wider chemical shift between the fat and water signals. Theoretically a high field strength (>1T) is required when executing a T2 FAT SAT sequence, consequently causing a technique with a high SNR in relation to a short scan-time, but with a sensitive field heterogeneity, vulnerable to off centered imaging and metal implants. The STIR sequence is a safe method for the diagnostic but with low SNR in relation to a longer scan-time. However, it will always be possible to improve the image quality in MRI at the detriment of e.g. a even longer scan-time, but all consequences (i.e. movement artifacts) ought to be considered before conducting a standard protocol (5-7).

6. ©Optima MR430s.

7. There was a significant variation relative image contrast (C) (p < 0.005).

8. The PCC showed that the agreement of the tendon scores revealed a positive correlation.

- There was considered high correlation: 0 was considered as no correlation and -1 as total negative.

Figure 1: Illustration of STIR principal, chemical shift. A) When using a narrow band width (bw), an excitation of only the-fat protons will occur. B) Using a low field strength (< 1T) the signal from the water and fat will overlap and it will not be possible to achieve an ideal fat saturation (5-7).

Figure 2: Illustration of the FAT SAT principal, chemical shift.

An abstract of the presentation