Danish University Colleges

Mens mobile health
Effect of health mobile apps to men with short-term or no studies during a 6 months intervention study
Levisen, Vinie Diana Hvidbak; Castaño, Francisco Mansilla; Jensen, Camilla Skovbjerg

DOI:
10.1093/eurpub/ckw175.077

Publication date:
2016

Document Version
Post-print: The final version of the article, which has been accepted, amended and reviewed by the publisher, but without the publisher's layout.

Link to publication

Citation for published version (APA):
CONCLUSION

- We present evidence that Health mobile apps affect the physical activity trends of men with short-term or no studies. This effect is increased when the individuals undergo preliminary and final physical condition measurements.
- The apps tend to modify the men’s way of thinking more than their doing.
- Health-promotion sms sent to these men every two weeks seem to increase the frequency on which they both think and do something about their health.
- Reporting the number of steps every fourth week makes these men think more about their own health.
- These men had a significant increase in muscle mass and oxygen uptake after the intervention process.
- There is a tendency to increase their median number of steps per day, rest heart rate, body fat and fitness rating.
- In contrast, their BP increased slightly.

BACKGROUND

- Men`s health depends of their education.
- Men die 4-2 years before women.
- Men`s health promotion number of steps.
- Men don’t think about their health.
- Health promotion without professional contact.
- Meet the man where he is – at work.
- Mobil app. promote number of steps.
- Men turn too late professional assistance.

METHOD

Clinical control trial flow-chart

Control group n = 35
Intervention group n = 33

n = 68
short term or no studies
19 – 62 year old men.

RESULTS

Table 1: Measurement of cardiovascular parameters at baseline and effect points
§ median values and Wilcoxon test for significance. * Statistically significant p<0,05

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group n=35 Baseline</th>
<th>Effect</th>
<th>p-value</th>
<th>Intervention group n=33 Baseline</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP systolik (mm Hg)</td>
<td>142,94 139,00</td>
<td>0,13</td>
<td></td>
<td>134,00</td>
<td>136,00</td>
<td>0,09</td>
</tr>
<tr>
<td>BP distolik (mm Hg)</td>
<td>90,00 88,00</td>
<td>0,56</td>
<td></td>
<td>83,76</td>
<td>86,36</td>
<td>0,03</td>
</tr>
<tr>
<td>RHR (bpm)</td>
<td>64,00 67,00</td>
<td>0,99</td>
<td></td>
<td>66,85</td>
<td>65,12</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Table 2: Measurement of physical parameters at baseline and effect points
§ median values and Wilcoxon test for significance. * Statistically significant p<0,05

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group n=35 Baseline</th>
<th>Effect</th>
<th>p-value</th>
<th>Intervention group n=33 Baseline</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness rating</td>
<td>33,00</td>
<td>33,66</td>
<td>0,39</td>
<td>36,03</td>
<td>37,18</td>
<td>0,068</td>
</tr>
<tr>
<td>Oxigen uptake (Vo2) (l/min)</td>
<td>2,85</td>
<td>2,93</td>
<td>0,21</td>
<td>3,09</td>
<td>3,22</td>
<td>0,03</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>14,90</td>
<td>19,10</td>
<td>2.10</td>
<td>17,46</td>
<td>16,43</td>
<td>0,06</td>
</tr>
<tr>
<td>Muscle mass (Kg)</td>
<td>67,80</td>
<td>67,30</td>
<td>0,46</td>
<td>67,90</td>
<td>68,81</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Fig 1: Effect of intervention on VAS doing and VAS thinking

The study showed:
- Men’s thoughts and action increases
- Better match between thinking and doing