Danish University Colleges

Developing a Learning Analytics tool

Wahl, Christian; Belle, Gianna; Clemmensen, Anita Lykke; Ringtved, Ulla Lunde

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record with the publisher's layout.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. jul., 2019
DEVELOPING A LEARNING ANALYTICS TOOL

ABSTRACT
This poster describes how learning analytics and collective intelligence can be combined in order to develop a tool for providing support and feedback to learners and teachers regarding students' self-initiated learning activities.

INTRODUCTION
In 2013 the Danish university college sector began the implementation of the Study Activity Model (SAM). SAM should provide for all programmes a single academic tool which can shape the study expectations of the students in relation to study intensity (Denmark, 2014). The model is divided into four categories as shown in figure 1. Based on previous work (fig. 2) (Ringtved et al., 2017) we are now designing a tool that support students in reflecting on their study related learning activities. And also help teachers becoming aware of study related learning activities and making activities a part of other categories in SAM.

THEORETICAL MODEL
Our model (figure 4) shows how students can use their self-initiated study activities to construct and enhance their learning capabilities and professional capabilities throughout their education. The model constitutes of a leaning triangle consisting of the three concepts self-initiating learning, self-regulating learning and self-assessing learning in each corner of the triangle. These three concepts are interdependent and feedback is given and taken in a continuous process as described by Clow (Clow, 2012).

FIGURE 1

In 2013 the Danish university college sector began the implementation of the Study Activity Model (SAM). SAM should provide for all programmes a single academic tool which can shape the study expectations of the students in relation to study intensity (Denmark, 2014). The model is divided into four categories as shown in figure 1. Based on previous work (fig. 2) (Ringtved et al., 2017) we are now designing a tool that support students in reflecting on their study related learning activities. And also help teachers becoming aware of study related learning activities and making activities a part of other categories in SAM.

FIGURE 2

The four categories in the Study Activity Model (Denmark, 2014)

FIGURE 3

Framework for enhanced use of students' self-initiated study activities.

METHOD
The method for our development process is Design & Development Research (DDR). DDR describes the research process for developing information technology products or artifacts (Ellis and Levy, 2010).

The DDR process is divided into six steps as shown in fig. 3. Currently our development process is somewhere between step b and c. We have the objectives in place after researching the overall problem. Now we need to get a clear idea about the detailed requirements and the design for the tool. One method we can use in this process is the Learning Analytics Model (LAM).

LAM is a model for describing a systematic approach to analytics into different components (fig. 5) (Siemens, 2013). The process described by LAM is iterative. The actions that is performed at the end (last step) will influence on the collection of new data (see later about feedback).

Developing on top of LAM we will introduce Collective Intelligence (CI) as an important part of our system. CI is the idea that supported by the technology, people can benefit from the synergy of the collected effort (Lévy, 1997).

** FIGURE 4**

Model for self-initiated, self-regulated and self-assessed activities.

ANALYSIS
In the following we will use LAM to analyze our current ideas for the tool. We will leave out components that are not relevant at this point.

FIGURE 5

Learning Analytics Model (Siemens, 2013)

FIGURE 6

Developing on top of LAM we will introduce Collective Intelligence (CI) as an important part of our system. CI is the idea that supported by the technology, people can benefit from the synergy of the collected effort (Lévy, 1997).

REFERENCES

Ringtved, Ulla et al. (2017). “Development of Students Learning Capabilities and Professional Capabilities”. In: Vancouver, BC, Canada.