In networked learning information and communications technology (ICT) is used to promote connections and interaction: between people and between people and resources, and thus boundaries and boundary work is always prevalent in discussions on networked learning (Ryberg & Sinclair, 2016). Based on two different case studies conducted at the Danish online Master programme on ICT and Learning (MIL), this paper addresses the issue of participation and reification through (dis)embodiment in design for networked learning.

Basically teaching is about designing opportunities for people to learn (Goodyear, 2015, Wenger, 1998), and according to Goodyear, Carvalho & Dohn (2016) there is an important distinction between elements of a learning networks that can be designed (partially, or completely), and processes that are emergent. From a learning perspective, how participants respond to design through their activities and through their use of boundary objects, is interesting. Building on Wenger's (1998) learning architecture, we analyse how the two designs for learning differ in terms of design dimensions and with regard to potential boundary objects.

In study I, the arena for learning was a 2D virtual learning environment (Dirckinck-Holmfeld, 2006), whereas the arena for learning in study II was a 3D virtual world (Riis, forthcoming). Carlile (2002) proposed a hierarchical typology for boundary objects, and in our analysis, we identify different boundary objects in the two learning arenas. Our findings show that all categories of boundary objects can mediate knowledge according to the typology, which suggests a relational rather than a hierarchical view on boundary objects. Nonetheless, certain boundary objects in the 3D learning arena (study II), in particular the avatar, seem to promote transformation in a more embodied manner, which has implications for identity formation of the participants. Furthermore, the 3D virtual space affords a concrete materialised, albeit virtual, opportunity for reification, which is different to that of the 2D environment. In the paper we will elaborate on these differences and based on the two cases provide a typology of boundary objects serving networked learning organised as problem and project based learning.

References


