Predicting Sessile Microorganism Populations in Oil and Gas Gathering and Transmission Facilities - Preliminary Results -

Mohammed Taleb-Berrouanea, Faisal Khana,*, Kelly Hawboldta, Richard Eckertb, Torben Lund Skovhusc

a) Centre for Risk, Integrity and Safety Engineering (C-RISE) Faculty of Engineering and Applied Science Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
b) DNV GL, 5777 Frantz Road, Dublin, OH, USA
c) VIA University College, Centre for Applied Research and Development in Building, Energy & Environment, Chr. M. Østergaards Vej 4, DK-8700 Horsens, Denmark

June 19, 2019
I. Planktonic VS Sessile MO

- Planktonic microorganisms are ubiquitous in most oil and gas gathering and transmission facilities.

- MIC is caused by sessile microorganisms, which are part of a biofilm consortium attached to the metal surface.

Biofilm on metallic surface [1]
I. Cont’d

Table 1: Comparison of planktonic VS sessile bacteria

<table>
<thead>
<tr>
<th></th>
<th>Planktonic bacteria</th>
<th>Sessile bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposition</td>
<td>Single cell or small aggregates</td>
<td>Aggregated form</td>
</tr>
<tr>
<td>Mobility</td>
<td>Free floating with the fluid flow</td>
<td>Attached to the surface</td>
</tr>
<tr>
<td>Detection/numeration</td>
<td>Relatively easy (fluid sample)</td>
<td>Expensive and time consuming</td>
</tr>
<tr>
<td>Link to the MIC</td>
<td>No direct link (species and location)</td>
<td>Direct link</td>
</tr>
<tr>
<td>Access</td>
<td>Liquid samples from sampling points</td>
<td>Coupons or swab sampling</td>
</tr>
<tr>
<td>Exposition to the biocides</td>
<td>High exposition</td>
<td>Low exposition</td>
</tr>
</tbody>
</table>
II. Research Question

- As field data and research work revealed, there is no direct link between planktonic and sessile population count and locations [3].

- How can we mimic the transfer of planktonic-sessile and sessile-planktonic inside a pipeline?

MIC inside a pipeline [2]
III. Proposed Solution

Figure 1: Lifecycle of sessile bacteria
III. Cont’d

• The solution should mimic the following phenomenon:

1. Deposition
2. Attachment
3. Detachment
4. Growth
5. Desegregation
6. Reattachment

Computational Fluid Dynamics (CFD)
III. Cont’d

About CFD

• Computational fluid dynamics (CFD) is a science that, with the help of digital computers, produces quantitative predictions of fluid-flow phenomena based on the conservation laws (conservation of mass, momentum, and energy) governing fluid motion [4].
IV. Case Study Application

Figure 2: Produced water pipeline (case study)
IV. Cont’d

Inputs: Fluid Specifications

- **Fluid**: Produced water from offshore installation
- **Fluid flow**: Eulerian
- **Fluid phase**: Multiphase

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Oil</th>
<th>Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume fraction</td>
<td>94%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Density (Kg/m³)</td>
<td>998.2</td>
<td>870</td>
<td>1098</td>
</tr>
<tr>
<td>Mass flow rate (Kg/s)</td>
<td>48.6</td>
<td>2.35</td>
<td>2.9</td>
</tr>
</tbody>
</table>
IV. Cont’d

Figure 3: Volume fraction of Bacteria
IV. Cont’d

Figure 4: Plot of the volume fraction of Bacteria

- Sessile bacteria count = \textbf{4.47\%} of the planktonic count
V. Next steps

Figure 1: Lifecycle of sessile bacteria
V. Next steps

VI. Key Challenges

Key challenges:

- Challenges in simulating fluid dynamics where volume fraction of bacteria is very low.
- Growth rate of sessile bacteria
- Others…
VII. Conclusion

- The CFD model aim to predict the count of sessile bacteria (each bacterial species separately).
- At this stage, further calibration by experimental data and field data is required.
- Once fully established, this model will provide an optimized and effective way to estimate the sessile microorganisms count given chemical, physical and microbiological data from the system.
References

Acknowledgement

• Supervisors (mentors):
  Dr. Faisal Khan
  Dr. Kelly Hawboldt
  Dr. Torben Lund Skovhus

• Collaborator:
  Richard Eckert (DNV GL)

• Funding agencies:
  Genome Canada
  MITACS
Thank You!