(IT)-støttet børnestavning
studier af børnestavnings rolle i den tidlige skriftsproglige udvikling
Engmose, Stine Fuglsang

Publication date:
2019

Document Version
Post-print: Den endelige version af artiklen, der er accepteret, redigeret og fagfællebedømt (peer-review) af udgiveren, men uden udgiverens layout.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Stine Fuglsang Engmose
Ph.d.-afhandling, NorS, Det
Humanistiske Fakultet,
Københavns Universitet

(IT)-STØTTET
BØRNESTAVNING

Studier af børnestavnings rolle i den tidlige skriftsproglige udvikling
Indhold

<table>
<thead>
<tr>
<th></th>
<th>Størrelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduktion til afhandlingen ... 8</td>
</tr>
<tr>
<td>2</td>
<td>Om børnestavning .. 12</td>
</tr>
<tr>
<td>2.1</td>
<td>Om betegnelsen børnestavning ... 12</td>
</tr>
<tr>
<td>2.2</td>
<td>Udviklingen af stavning .. 13</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Ehri .. 13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Treiman og Kessler ... 15</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Sénéchal .. 17</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Konsekvenser for forudsigelse .. 18</td>
</tr>
<tr>
<td>2.3</td>
<td>Forskning i børnestavning .. 19</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Et tættere blik på børnestavning .. 20</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Forudsætninger for børnestavning ... 20</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Opsamling ... 23</td>
</tr>
<tr>
<td>3</td>
<td>Studie 1. (IT)-støttet børnestavning – en effektundersøgelse 24</td>
</tr>
<tr>
<td>3.1</td>
<td>Baggrund. Studie 1 ... 24</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Børnestavning i undervisningen ... 24</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Kvalitative undervisningsbeskrivelser .. 24</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Effektundersøgelser ... 25</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Opsamling ... 33</td>
</tr>
<tr>
<td>3.2</td>
<td>(IT)-støtte. Studie 1 .. 34</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Udviklingsarbejde. Design af talesyntese til Studie 1 .. 35</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Valg og design af syntese .. 40</td>
</tr>
<tr>
<td>3.3</td>
<td>Forskningsspørgsmål. Studie 1 .. 43</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Pilotstudie. Sværhedsgraden af ordene i Studie 1 .. 47</td>
</tr>
<tr>
<td>3.4</td>
<td>Metode. Studie 1 ... 52</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Deltagerne .. 52</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Procedure .. 54</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Testbatteri ... 55</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Undervisningen .. 67</td>
</tr>
<tr>
<td>3.5</td>
<td>Resultater. Studie 1 ... 76</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Præsentation af analysemetoder ... 76</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Førtest .. 79</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Eftertest .. 82</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Langtidseffekter for stavning og læsning ... 103</td>
</tr>
</tbody>
</table>
6 Perspektiver .. 1955
7 Referencer .. 196
8 Bilag ... 203

8.1 Grafem-fonem-forbindelser i talesyntesen .. 203
 8.1.1 Konsonantgrafem .. 203
 8.1.2 Vokalgrafem .. 204
8.2 Bilag - ord i pilotstudiet ... 205
8.3 Bilag – ord fordelt på testklasse i pilotstudiet .. 206
8.4 Bilag - bogstavernes hyppighed på dansk ... 208

Bilag - overblik over testrækkefølge ... 210

8.4.1 Førtest .. 210
8.4.2 Eftertest .. 210
8.4.3 Opfølgende eftertest .. 211

8.5 Bilag - vejledning til test, som er er udviklet til studierne i denne afhandling 212
 8.5.1 Vejledning til staveprøve ved førtest .. 212
 8.5.2 Vejledning til læseprøve ved før- og eftertest ... 214
 8.5.3 Vejledning til Skriv frit ved eftertest .. 215

8.6 Bilag - børnenes arbejdsark til test, som er udviklet til studierne i denne afhandling 216
 8.6.1 Arbejdsark til staveprøven ved førtest .. 216
 8.6.2 Arbejdsark til staveprøven ved eftertest .. 219
 8.6.3 Arbejdsark til læseprøven ved før- og eftertest .. 225
 8.6.4 Arbejdsark til Skriv frit ved eftertest .. 227

8.7 Bilag - korrespondance fonologisk afstandsscore stavetest (før/efter) .. 228
 8.7.1 Generelle korrespondancer – bruges til alle ord i stavetesten (før/efter) .. 228
 8.7.2 Specifikke korrespondancer for hvert målord i stavetesten (før/efter) ... 230

8.8 Bilag - korrespondance fonologisk afstandsscore læsetest (før/efter) .. 232
 8.8.1 Eksempel på korrespondance for sproglyden [l] i ordet mål .. 232

8.9 Bilag – undervisningen .. 234
 8.9.1 Rækkefølge eksperimentelle grupper .. 234
 8.9.2 Fordeling af forskningsassistenter ... 234
 8.9.3 Ord til undervisningen .. 235
 8.9.4 Spørgeskema til børnehaveklasselederne ... 236
 8.9.5 Spørgeskema om implementeringen af indholdselementerne i undervisningen 238
 8.9.6 Vejledning til forskningsassistenterne .. 241
8.9.7 Figuroversigt ... 244
8.9.8 Tabeloversigt ... 245
Resumé

Formålet med min afhandling er at undersøge børnestavnings rolle i den tidlige skriftsproglige udvikling. Dette gør jeg ved dels at gennemgå og diskutere eksisterende forskningslitteratur om emnet og dels ved at gennemføre to empiriske undersøgelser – en effektundersøgelse (Studie 1) og en langtidsundersøgelse (Studie 2).

Studie 1 undersøger, i hvilken grad børnestavning med forskellige typer af støtte udvikler tidlige skriftsproglige færdigheder. I en effektundersøgelse blev 80 danske børnehavklassebørn tilfældigt fordelt i fire grupper med 20 børn i hver: kontrolgruppe (KG), indirekte lærerstøtte (IL), IT-støtte (IT) og direkte lærerstøtte (DL). I de eksperimentelle grupper børnestavede børnene – med forskellige støtteformer og i små grupper – 54 ord over 18 undervisningsgange, fordelt på seks uger. KG fik børnehavklasseundervisningen. Ved førtest var der ingen forskelle mellem børnene. Ved efter test var børnene i eksperimenterne grupper gået frem på næsten alle mål, mens børnene i KG kun var gået frem på enkelte. Analysen af forskelle mellem grupper viste, at DL og IT, men ikke IL, ved stavning af utrænede ord havde et bedre gennemsnit end KG. DL adskilte sig fra KG, uanset om scoringsmetoden var fonologisk eller ortografisk, mens IT kun adskilte sig ved den fonologiske metode. For læsning var der signifikant hovedeffekt af deltagergruppe. Kun forskellen mellem KG og IL var statistisk signifikant. Vurderet ved effektstørrelser var forskellen mellem KG og DL henholdsvis IT sammenligne mellem denne, mens forskelle mellem de tre eksperimentelle grupper var minimale. For opmærksomhed på sproglyd og bogstavkendskab var der ingen signifikante forskelle mellem nogen grupper.

Effekten af børnestavning med DL på stavning er væsentlig, da den bekræfter fund fra andre sprog. Effekten på stavning med IT er opmuntrende, fordi den peger på et stort undervisningspotentiale ved videreudvikling af IT-støttet børnestavning. Den generelle fordel til grupper, der børnestavede over KG i effekten på læsning indikerer, at det væsentlige for denne er det, IL, IT og DL har til fælles.

Studie 2 undersøger sammenhængen mellem børnestavning og tidlig læsning i børnehavklasse og stavning og læsning i 1. kl. for 92 danske børn. Formålet var dels at vurdere betydningen af fonologiske over for ortografiske scoringsmetoder for styrken af sammenhængen mellem samme færdighed tidligt og senere. Sammenligning af korrelationer viste en fordel i den fonologiske metode. Endvidere blev det unikke bidrag fra tidlige færdigheder til senere færdigheder vurderet ved multiple hierarkiske regressionsanalyser. Analysen viste, at kvaliteten i børnestavning forklarede 5 % unik variation i både stavning og læsning i 1. kl. Tidlig læsning forklarede 2 % unik variation i læsning i 1. kl., men ikke, når børnestavning også var i modellen som prædiktor af læsning i 1. kl. Disse resultater er væsentlige, fordi de i en dansk sammenhæng viser, at børnestavning med en fonologisk afstandsscore kan bidrage væsentligt til forudsigelsen af læsning og stavning i 1. kl. For læsning, med en fonologisk afstandsscore udviklet til dette studie, er resultatet begyndende evidens for metodens gyldighed og indikerer, at forskelle i børnenes fonologiske læsning tidligt kan indfange forskelle, som er relevante for den senere læsning. Endvidere understøtter resultaterne, at den fonologiske kvalitet i børnestavning og tidlig læsning er mere end summen af opmærksomhed på sproglyd og bogstavkendskab, men i høj grad indfanger samme variation.

Fremtidig forskning om børnestavnings undervisningspotentiale vil kunne bygge på evidensen i dette studie og belyse effekten af IT-støtte børnestavning i andre grupper af børn og under andre betingelser. Fremtidige studier kan belyse betydningen af scoringsmetode for forudsigelsen af senere færdigheder ved at sammenligne bidraget fra tidlige færdigheder med fonologiske og ortografiske afstandsmål. Eller belyse potentialet i de fonologiske afstandsmål som prædiktorer af børn i risiko for skriftsprøgsvanskeligheder. Dette vil fra et praksisperspektiv være en væsentlig anvendelsesmulighed for scoringsmetoden.
Abstract

The purpose of the current thesis is to examine the role of invented spelling in early literacy development. This is accomplished by reviewing and discussing the existing research literature on the subject as well as through two empirical studies: an intervention study (Study 1) and a longitudinal study (Study 2).

Study 1 investigated how different types of guidance provided during invented spelling can improve early literacy skills. In an intervention study 80 Danish pre-school children were randomly divided into one of four groups: control group (CG), unguided (UN), IT-guided (IT) and guided (GU). Children in the CG experienced business as usual while children in the experimental groups spelled words as best they could. The children in the UN group received no feedback, children in the IT group received feedback from a speech synthesis, and children in the GU group received feedback from a research assistant. Guidance differed across groups. In all experimental groups, children wrote a total of 54 words in small groups over 18 teaching sessions spread over six weeks. At posttest, there were no differences between the children in early literacy skills. At posttest, the children in the experimental groups improved on almost all early literacy measures. The children in the CG only showed improvement in two. An analysis of differences between groups showed that children in the GU and IT groups, but not the UN group, on average spelled untrained words better than the CG. Spelling performance in the GU group differed from the CG regardless of whether the scoring method was phonological or orthographic, while IT group only differed with the phonological method. There was a significant main effect of group on reading ability. Only the difference between the CG and UN group was statistically significant, but effect sizes indicate that the difference between the CG and the GU and IT groups are comparable, though non-significant. For phonological awareness and letter knowledge, there were no significant differences between groups. The finding that guided invented spelling develops the quality of spelling is important because it confirms findings from other orthographies. The effect on spelling in the IT group is encouraging because it points to a considerable teaching potential of IT-supported invented spelling.

Study 2 examined the relationship between spelling ability in kindergarten and at the end of first grade and the relationship between reading ability in kindergarten and at the end of first grade for 92 Danish children. I assessed whether a phonological or orthographic scoring method of early spelling and reading abilities was more strongly correlated to later spelling and reading. I compared the correlation between invented spelling score and end-of-year spelling ability for the two methods of scoring invented spelling. I did the same for reading ability. There was an advantage to the non-binary phonological method of scoring over the binary orthographic method. The unique contributions from early spelling and reading skills to later skills was assessed by hierarchical multiple regression. The analysis showed that the quality of invented spelling explained 5% of unique variation in both spelling and reading at the end of the first grade. Early reading ability explained 2% of unique variation in first-grade reading, but not when the quality of invented spelling was also included as a predictor. These results suggest that in Danish, a phonological method of scoring invented spelling better predicts spelling and reading ability at the end first grade than a traditional orthographic correctness method of scoring. The phonological scoring method of reading was developed for this study. The results provide initial evidence for the validity of the measure and suggest that differences in phonological reading captured by this measure are relevant for later reading. These results suggest that the phonological quality of invented spelling and early reading are more than the sum of phonological awareness and letter knowledge and thus vital in itself.

Future research on invented spellings should build on the evidence from the present study on the effect of IT-guided invented spelling and evaluate the effect of this teaching method in other context. Future studies may also highlight the potential of using the phonological measure of early skills to predict risk of spelling or reading failure.
Forord

Denne afhandling var heller ikke blevet til uden hjælp og støtte fra meget fagligt kvalificerede kollegaer. Her skal lyde en særlig tak til kollegaer fra Center for Læseforskning ved Københavns Universitet, som har lyttet til mine overvejelser og tilbudt sparring og hjælp igennem hele forløbet. En særlig tak til min hovedvejleder, Holger Juul, som har givet mig plads til at gøre tingene i mit tempo, hjulpet mig til at holde fokus og troet på mig hele vejen. Også en særlig tak til Anne-Mette Veber og Hanne Trebbien Daugaard, som på en særlig måde har bidraget til den emotionelle og faglige udviklingsrejse, ph.d.en har ledt mig ud på. Tak til Professionshøjskolen Absalon, som tog en chance ved at tage mig ind fra gaden og støttede mig i at skrive ansøgningen. Tak også for faglig sparring til kollegaer på Absalon. Tak også til internationale kollegaer på Reading and Language Lab, Washington University, St. Louis. Uden jeres forskning, ideer og kommentarer var jeg ikke nået frem til at score spirende stavning og læsning, som det er sket i denne afhandling.

1 Introduktion til afhandlingen

For forældre, lærere, pædagoger og andre fagpersoner, som beskæftiger sig med førskole- og indskolingsbørn, er børns tidlige ikke-konventionelle stavemåder et velkendt fænomen (se Figur 1.1).

Figur 1.1
Tre danske børns forsøg med skriften.

Figur 1.1. Til venstre ses forsøg før skolestart, i midten ved skolestart, til højre i 1. kl.

Forældre ser dem måske som søde, tidlige forsøg på at skrive, som noget, der er en del af den naturlige udvikling i stil med deres barns første mennesketegninger, hvor arme og ben udgår fra hovedet, fordi mennesket endnu bliver tegnet uden en krop. De gemmer måske barnets små forsøg med skriften, der minder om barnets egne børnestavninger. Andre forældre bliver måske bekymrede over stavefejlene i de tidlige stavemåder, fordi de er bange for, at fejlene vil påvirke børnenes staveudvikling negativt. Pædagogen og læreren vil måske også se på børnenes tidlige stavemåder og tekster som en del af den naturlige udvikling af skriftsproget eller som et tegn på, at børnene, blot de ser og møder tekster og opmuntrer til at skrive, vil lære sig selv at stave. Andre vil måske bruge stavemåderne og tekster som et redskab i undervisningen. Andre forældre og pædagoger vil måske, ligesom forældrene, være bekymrede for udviklingen af korrekt stavning, hvis børnene får lov at skrive på denne måde, mens nogen vil bekymre sig om, hvorvidt man hæmmer en naturlig udvikling ved at rette på barnets egne stavemåder.

Fordi alle, som er i berøring med disse tidlige stavemåder, børnestavning, vil forstå eller tolke deres betydning subjektivt, er det relevant at blive klogere på deres rolle i udviklingen af skriftsproglige færdigheder. Når vi ved mere om dette, får vores syn på børns tidlige stavemåder fast grund under fødderne. Det betyder, at diskussioner om deres rolle i fx udviklingen af læsning og korrekt stavning eller om deres potentiale som redskab i undervisningen ikke alene bygger på subjektive tolkninger, men kvalificeres af evidens fra undersøgelser.

Et første interessant spørgsmål kunne, når vi observerer et fænomen som børnestavning, relatere sig til, om fænomenet er alment eller generelt? Er det fx sådan, at alle børn i alle sprog børnestavner? Et andet spørgsmål, som også knytter sig til det almen og generelle, er, om der på tværs af børn er mønstre i de tidlige stavemåder? Er det fx noget bestemt, børnene repræsenterer, når de børnestavner, og gør de det på generelle måder? Hvis børnestavning på den ene eller den anden måde er et generelt fænomen, så kan andre interessante spørgsmål være, om der kan beskrives en generel udvikling i tidlige stavemåder, og hvad der kendetegner mindre over for mere udviklet børnestavning? Etablere et næste spørgsmål, som kan udspringe af viden om mere og mindre udviklet børnestavning, kan være, om kvaliteten af denne er væsentlig for andre færdigheder, fx senere korrekt stavning og læsning? Med dette spørgsmål kommer nye spørgsmål, som
knytter sig til, om børns tidlige stavemåder danner grundlag for den senere udvikling af skriftsproglige færdigheder, eller om forskelle i kvaliteten af børnestavning nærmere afspejler andre og mere grundlæggende færdigheder. I forlængelse heraf kan spørgsmål om udbyttet af undervisning med fokus på at fremme kvaliteten i børnestavning være med til at belyse dens betydning i udviklingen af korrekt stavning og læsning.

Alle disse spørgsmål er væsentlige, fordi deres besvareelse igennem forskningsstudier er med til at skabe evidens om den rolle, børns tidlige stavemåder har for udviklingen af fx korrekt stavning og læsning. De indsigter er væsentlige, dels for vores forståelse af udviklingen af sikker stavning og læsning og teorier om udviklingen af disse færdigheder, men også for fx læreren, som skal reagere på børnenes tidlige stavemåder og vurdere, hvad han/hun kan bruge dem til, og hvilken rolle de skal indtage i undervisningen.

Gennem tiden er disse spørgsmål blevet belyst i adskillige forskningsstudier. Disse forskningsstudiers fund, på nær studier om effekten af undervisning, er emnet for kapitel 2 i afhandling, som dog indledes med en refleksion over begrebet børnestavning efterfulgt af en præsentation af teoretiske bud på underliggende færdigheder i udviklingen af stavning (se kapitel 2). Formålet med kapitlet er ikke en gennemgang af al forskning om emnet, men at give en introduktion til den type af forskning, der er blevet bedrebet om børns tidlige stavemåder, og den viden, som denne har genereret.

Denne evidens og de deraf afledte teoretiske overvejelser er baggrunden for forskningsspørgsmålene i de effektundersøgelser, der er lavet om undervisning med børnestavning, samt for tolkningen af deres resultater. Betydningen af undervisning med børnestavning for børnenes tilgængelighed af tidlige skriftsproglige færdigheder er emnet for afhandlingens Studie 1 (se kapitel 3). Forskningsspørgsmålene i Studie 1 bygger på evidens fra tidligere effektundersøgelser for, at børnestavning, med den rette støtte, kan udvikle børnenes stavning og måske læsning, opmærksomhed på sproglyde og bogstavkendskab.

Studie 1 undersøger betydningen af at støtte børnene direkte i at forbedre kvaliteten af deres børnestavning i sammenligning med at støtte børnene indirekte ved at præsentere dem for den korrekte stavemåde, men overlader det til dem selv at bruge denne til at forbedre kvaliteten af deres stavemåde. Denne sammenligning mellem direkte og indirekte støtte er kun lavet i enkelte tidligere studier og ikke i en dansk kontekst. Studiet bidrager dermed med ny viden om betydningen af direkte over for indirekte støtte i en dansk kontekst og udvider den spæde eksisterende viden om spørgsmålet. Samtidig undersøger studiet værdien af IT-støttet børnestavning for udviklingen af tidlige skriftsproglige færdigheder ved at sammenligne IT-støttet med direkte støtte. IT-støtten i Studie 1 består i oplæsning af børnenes stavemåder ved en specialdesignet talesyntese, som er designet til at rette børnenes opmærksomhed på det alfabetiske princip, som er det grundlæggende princip i alfabetiske skriftsprog (fx Gleitman og Rozin, 1977), samt gøre børnene opmærksomme på, om deres stavemåder mangler eller har for mange lyde. Da resultatet for IT-støttet børnestavning ikke har tidligere direkte sammenligningsgrundlag i litteraturen, bidrager studiet med ny viden om potentiølt at støtte børnestavning på denne måde. Samtidig skal resultatet alene ses som indledende evidens for, om denne type støttes virkning, da et enkeltstående studies resultaters gyldighed altid må efterprøves i nye studier.

Begrunnelsen for indholdet i undervisningen i afhandlingens Studie 1 afrænser sig dels til teorier om væsentlige færdigheder i udviklingen af stavning og læsning, dels til de betingelser, der er evidens for effekten af i tidligere studier og de deraf afledte forventninger til udbyttet af undervisning med børnestavning og sidst til problematikker knyttet til implementeringen af undervisningen i praksis og forsøg på at løse disse. En anden tilgang kunne have været at begrunde indholdet i undervisningen med udgangspunkt i læringsteori, hvilket flere tidligere studier har gjort (fx Ouellette og Sénéchal, 2008). Dette
kunne også have ledt til nye og relevanteindsigter. Endvidere er jeg ikke blind for, at al undervisning, bevidst eller ubevidst, placerer sig i forhold til læringsteorier, hvorfor afhandlingen givetvist var blevet beriget af læringsteoretiske perspektiver (fx Vygotsky, 1962). Plads og tid har dog tvunget mig til at afrænse mig, og perspektivet for afhandlingen blev, som det blev, fordi jeg, med min faglige baggrund som cand.mag., audiologopæd og syv år som konsulent for ordblinde børn, er dybt optaget af effektiv undervisning i skriftsproget og dermed også har fundet det naturligt at designe et studie, der genererer viden om dette, derfor har det væsentlige for mig været at beskrive de betingelser, som resultaterne er blev genereret under, vurdere resultaternes kvalitet og sammenligne dem med resultater fra tidligere studier, beskrive perspektiver for praksis og pege på ubesvarede spørgsmål om børnestavning i undervisningen. Jeg anser således ikke læringsteori som uvæsentlig, men har blot et andet fokus i afhandlingen.

Fokus for afhandlingen er børnestavning i den normale udvikling, som den ser ud omkring børnehaveklassealderen og dennes rolle i undervisning i børnehaveklassen og som prædiktor for stavning og læsning i 1. kl. Derfor er gennemgangen af tidligere studier også afgrænset til studier, hvor deltagerne er fra nogenlunde svarende klassetrin.

Figur 1.2
Oversigt over afhandlingens måde at repræsentere børnestavning, korrekt stavning, udtale og fonemer.

<table>
<thead>
<tr>
<th>Børnestavning</th>
<th>Korrekt stavning</th>
<th>Udtale</th>
<th>Fonemer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Køs</td>
<td>Kys</td>
<td>['køs']</td>
<td>/køs/</td>
</tr>
</tbody>
</table>

Figur 1.2. Eksemplificering med det danske ord kys af afhandlingens måde at repræsentere børnestavning, korrekt stavning, udtale og fonemer.

God læselyst!
2 Om børnestavning

2.1 Om betegnelsen børnestavning

I en dansk sammenhæng er betegnelsen ”børnestavning” nært forbundet med en undervisningsmetode, hvor børnenes tidlige forsøg med skriften indgår som et kerneelement – i første omgang i ”Nej farfar! For vi børnestaver” (Bjerre og Friis, 2002) og senere som et element i den undervisningspraksis, der er beskrevet under betegnelsen ”Opdagende skrivning” (Korsgaard m.fl., 2010). Fælles for disse to danske undervisningsmetoder, som præsenteres af Bjerre og Friis (2002) og Korsgaard m.fl. (2010) er, at børnene opmuntres til at skrive deres egne tekster, før de kan stave korrekt. Tekstproduktionen skal foregå i et anerkendende miljø, hvor læreren ikke retter fejl direkte, men i stedet støtter børnene i selv at opdage sammenhængen mellem bogstav og lyd. I begge metoder er lærerens arbejde med at udvikle kvaliteten af børnestavning hen mod konventionel stavning indirekte, og denne form for støtte betegnes i indeværende studie som indirekte.

I modsætning til overnævnte danske beskrivelser af undervisningsmetoder bruger jeg i denne afhandling alene ”børnestavning” om børns tidlige staveforsøg. ”Staveforsøg” forstås som børnenes forsøg på at anvende bogstaver til at nedskrive talesprog, og ”tidlig” skal forstås som en afgrænsning af fokus til førskolealderen og indskolen og dermed til en aldersgruppe, hvor det første morfem i betegnelsen ”børnestavning” også anvendes i andre ord med tilsvarende betydning fx børnehave, børnehaveklasse, børnefilm, børnerim, børnesang. Denne måde at bruge betegnelsen ”børnestavning” på har måske nok den ulempe, at den kan forvirre læseren til tro, at tidlige staveforsøg, børnestavning, er noget helt andet end senere staveforsøg, hvilket der ikke er beløg for at tro (se afsnit 2.2). Nyere teorier om udviklingen af stavning argumenterer for, at sprogbrugerens staveforsøg blot udvikler sig ved, at den viden om sammenhængen mellem bogstaverne og talesproget, sprogbruget sprog, staveforsøg er baseret på, bliver mere omfattende (se afsnit 2.2).

Jeg har dog valgt at bruge ”børnestavning”, denne svaghed til trods, da betegnelsen har den fordel, at det allerede er et etableret ord i det danske sprog. Dette underbygges af, at betegnelsen har sin egen Wikipedia-side (kilde: https://da.wikipedia.org/wiki/B%C3%B8rnestavning) og af, at en simpel Google-søgning (juli, 2019) på begrebet har næsten 10.000 hits, hvoraf et hurtigt gennemløb af de første ti viser vejledning fra læsevejledere til forældre og børnehaveklasseledere samt beskrivelser af arbejdet med børnestavning i fx ”Folkeskolen”, som er fagbladet for de danske læreres fagforening, Danmarks Lærerforening. Mange forældre og lærere vil således nok have hørt om børnestavning og have en ide om denne betegnelses betydning. Ved at anvende betegnelsen ”børnestavning” kan jeg med afhandling og dens resultater tale ind i en eksisterende praksis og bidrage med ny viden og nuancer.

”Børnestavning” dækker med denne sprogbrug ganske enkelt over det fænomen, som er illustreret i Figur 1.1, og som kan beskrives som børnenes tidlige forsøg på at anvende bogstaver til at nedskrive talesprog. Med denne brug af betegnelsen ”børnestavning” er der ikke en forbindelse til bestemte undervisningsmetoder. Denne sprogbrug svarer til hvordan ”invented spelling” bruges i engelsk litteratur. Jeg vælger i denne afhandling at afgrænse betegnelsen ”børnestavning” til at dække over fænomenet tidlige staveforsøg uden at knytte an til bestemte undervisningsmetoder. Dette gør jeg, da en sprogbrug, som automatisk henviser til to forskellige ting, kan begrænse. En opdelt sprogbrug gør det nemmere at beskrive og forsk separat i fænomenet, henholdsvis i dets implementering i forskellige undervisningspraksisser. Dette afspejles i den engelsksprogede litteratur, hvor det samme begreb bruges i
forskning, der med meget forskellige didaktiske og metodiske ståsteder undersøger tidlige staveforsøgs rolle i undervisningen.

Samtidig afgrænser jeg mig med denne sprogbrug, ligesom ved den engelske sprogbrug ”invented spelling”, fra at forklare den viden, der ligger bag børnenes tidlige staveforsøg. I Undervisningsministeriets ”Vejledningen for børnehaveklassen” (kilde: https://arkiv.emu.dk/sites/default/files/Vejledning%20b%C3%B8rnehaveklassen.pdf) bruges betegnelsen ”fonologisk stavning”, fx om børnenes tidlige staveforsøg. En sådan sprogbrug forklarer i sig selv den viden, børnenes trækkjer på i deres tidlige staveforsøg. En sådan sprogbrug kan dog være uheldig for nuancerne i vores forståelse af begrebet, hvis fx ny evidens tyder på, at også anden viden end fonologisk har indflydelse på børnenes tidlige stavemåder. I den situation hvor betegnelsen, som dækker fænomenet, vægter én form for viden, kan anden viden, som også ligger til grund for fænomenet, alene på baggrund af sprogbrugen, komme til at virke sekundær. I det perspektiv er ”børnestavning” en mere neutral betegnelse.

Jeg tror, at det er en fordel for muligheden for at stille nye spørgsmål og forstå international forskningslitteratur om ”invented spelling”, at den betegnelse, vi bruger, alene refererer til et fænomen uden at knytte sig til bestemte metoder, og at betegnelsen er neutral, forstået på den måde, at det ikke i sig selv forklarer, hvad der ligger bag fænomenet. På den baggrund bruges betegnelserne ”børnestavning” og ”børns tidlige staveforsøg” i denne afhandling synonymt om det fænomen, at børnene i førskole- og indskolingsalderen forsøger at bruge bogstaverne til at repræsentere talesproget med.

2.2 Udviklingen af stavning

Da børnestavning i denne afhandling undersøges som noget, der kan stimulere udviklingen af stavefærdighed, er det rimeligt, at starte med at præsentere teoretiske bud på forløbet af den normale staveudvikling. Jeg præsenterer tre teoretiske bud på underliggende færdigheder i udviklingen af stavning. Disse er udvalgt, da de bygger på empiriske fund om faktorer med indflydelse på udviklingen af udviklingen af stavning. Med udgangspunkt i denne afhandlings definition af børnestavning (se afsnit 2.1), som børns tidlige repræsentation af talesproget med bogstaver, prøver jeg at placere børnestavning i de tre teoretiske bud på udviklingen af sikker stavning. Formålet er at forstå, hvilken rolle børnestavning har. Senere i afhandlingen forholder jeg mig til, om resultaterne fra de undersøgelser, der præsenteres i kap. 3 og 4, kan forklares eller er i konflikt med, hvordan de teoretiske bud på underliggende færdigheder i udviklingen af stavning, beskrevet i dette afsnit, placerer børnestavning.

2.2.1 Ehri

det tilegnelsen af det alfabetiske princip på baggrund af opmærksomhed på sproglyd og viden om forbindelserne mellem bogstav og sproglyd, der sætter gang i udviklingen af forbindelsernes kvalitet.

2.2.2 Treiman og Kessler

De forbindelser, børnene tilegner sig mellem talesproget og ortografi, svarer til forbindelserne i Ehris faseteori (se afsnit 2.2.1), men rækkefølgen for, hvornår børnene tilegner sig disse forbindelser, er forskellig i teorierne. Her forudsiger IMP i modsætning til Ehris (se afsnit 2.2.1), at børnene allerede tidligt lærer om de hyppigste og mest stabile mønstre i skriftsprogets ydre form. Ehris (se afsnit 2.2.1) karakteriserer blot den tidlige stavning som ikke-fonemisk. Treiman og Kessler (2014) begrunder de tidlige mønstre med, at deres sværhedsgrad ikke alene afhænger af, om de er knyttet til skriftens ydre form eller til lingvistisk viden, men også til hyppigheden af forbindelsen og den lingvistiske indsigt, mønsteret kræver. På den måde er der både inden for mønstre relateret til skriftsprogets ydre form og til den gruppe af mønster, der knytter lingvistisk funktion til bogstaverne, en variation i sværhedsgrad. Det betyder, at nogle mønster, der knytter sig til skriftsprogets ydre form, indlæres meget tidligt, mens andre først læres sent. Børnene vil ofte lære de hyppigste mønstre i skriftens ydre form, før de motiverer deres stavning ud fra mønster, der forbinder bogstaverne med lingvistiske enheder. IMP forudsiger på den måde, at børnene fra en helt tidlig alder bruger viden om forskellige mønstre til at understøtte deres stavning af et givet ord, hvilket betyder,
at på tværs af ord kan børnene på et givet tidspunkt bruge viden om ret forskellige mønstre som grundlag for deres stavning. I overensstemmelse med Ehri (se afsnit 2.2.1) vægter IMP, at korrekt stavning afhænger af et præcist kendskab til ords skrevne form og stærke forbindelser mellem bogstavstrenge, den fonologisk repræsentation og betydning.

Ifølge IMP (Treiman og Kessler, 2014) kan denne viden om generelle mønstre anvendes, selv i ord, hvor de kun motiverer dele af stavning, og sammen med viden om andre mønstre. Dette vil sige mange stavemåder, selv stavemåder som klassisk betegnes som undtagelser, for en stor del kan motiveres af generelle mønstre. Derfor er det heller ikke kun de simple regler for bogstaverne og deres standardudtaler, børn skal undervises direkte i, men også undervisning i andre mønstre kan understøtte udviklingen af stavning. Børn bruger de samme forbindelser, når de staver kendte og ukendte ord. I IMP er der ikke skarpt adskilt endeligt at forstå stavning, der er lagret i hukommelsen, og ord, som ikke er.

I denne teoretiske ramme vurderer jeg, at børnestavning, med denne afhandlings definition, hører til på det tidspunkt i udviklingen, hvor børnene begynder at tilegne sig viden om mønstre for skiftens ydre form og endnu ikke har indigt i sammenhængen mellem lingvistiske enheder og bogstaverne. Børnestavning vil på dette tidspunkt virke tilfældig, men være motiveret af børnenes erfaring med hyppige bogstaver, fx bogstaverne i deres eget navn. Børnestavning vil også høre før på det tidspunkt i udviklingen, hvor børnenes stavemåder begynder at være motiveret af sammenhængen mellem de enkelte sprog og ortografi. På dette tidspunkt, ligesom på et hvilket som helst andet, vil børnene ifølge IMP ikke alene anvende disse mønstre til at motivere deres børnestavning. Disere børnestavning vil også være motiveret af den ivor, de har om andre lingvistiske enheders forbindelse til bogstaver og af etableret viden om de mønstre, der knytter sig til skriftsprogets ydre form. Det følger også af IMP, at den viden om mønstre, børnene anvender i en given børnestavning, afhænger af de ord, et barn skriver og derfor kan variere på tværs af ord. I IMP er nogle forbindelser, knyttet til skiftens ydre form, særligt lette for børnene at tilegne sig. Det vil derfor være disse forbindelser, der påvirker børnestavningen, fx vil hyppige bogstaver, som bogstaver i barnets eget navn, være mere hyppige, end han ville kunne forvente ud fra hukommelsen i ordet, eller børnene vil sjældnere skrive MM for mime, men nærmere MØ, da de vil have erfaring med skiftens ydre form, der gør, at de synes, det sidste ligner et ord mere end det første. Endvidere vil nogle sproglaye være nemmere for børnene at identificere, da de er mindre tæt smeltet sammen med de omkringliggende sproglaye, end andre sproglaye. Fx vil et barn, der kender bogstav R og kender standardudtalen for dette bogstav, have nemmere ved at identificere det i et ord, hvor lyden er initial, fx rig, end i et ord, hvor lyden er en del af en konsonantklynge, fx krig.

Børnestavning er således et resultat af, at børnenes tidlige forsøg på at repræsentere talesproget med bogstaver er motiveret af viden om mønstre knyttet til sammenhængen mellem bogstaver og sproglaye, men også et resultat af de andre mønstre, som barnet har tilegnet sig viden om vedrørende skiftens ydre form og talesproget. I IMP vil børnene på alle tidspunkter i staveudviklingen opfinde stavemåder med
udgangspunkt i deres kendskab til forbindelserne mellem ortografien og talesproget. Der kan derfor ikke trækkes nogen skarp linje mellem børnestavning og korrekt stavning i IMP. Men da børnestavning med denne afhandlings definition er børnenes tidlige stavemåde, bliver børnestavning i IMP et resultat af den viden om mønstre i skrift- og talesprogets ydre og indre form, som børnene tilegner sig tidligt.

2.2.3 Sénéchal

Gennem tidlig stavning har børnenes lejlighed til at øve det alfabetiske princ og kan ad den vej udvikle opmærksomhed på sproglyde og kendskab til forbindelsen mellem grafem og sproglyd. Ifølge modellen kan børn med denne type af tidlig stavning producere præcise stavemåder for lydrette ord, fx alle sproglyde i ordet hus børnestavet som HUS, men ikke for ord, eller dele af ord, hvor dette ikke er tilfældet, som fx i ordet kys børnestavet som KØS. For at nå frem til en stavemåde må børnene segmentere ordene i sproglyde og skrive disse med bogstaver. Denne analyse leder til spæde og i nogle tilfælde ufuldstændige eller præcise ortografiske repræsentationer. Børnenes erfaring med det analytiske arbejde samt de spæde ortografiske repræsentationer understøtter børnenes begyndende færdighed i at omskilde bogstavstrenge til lydenheder – læsning, hvorfor tidlig stavning, for før-læsere, vil forudse tidlig læsefærdighed.

Derimod er læsning nødvendig for at nå til at stave ikke-lydrette ord korrekt. Korrekt stavning af fx kys kræver udviklingen af præcise ortografiske repræsentation gennem læsning. Uden læsning vil det tidlige stavning ikke udvikle sig fra, at børnene skriver sproglydene med bogstaver, der har denne sproglyd som sin standardudtale.

Det følger heraf, at senere stavning og læsning i en gruppe af børn, som er læsere, bedst forklare af tidlig læsefærdighed, mens senere læsning og stavning i en gruppe af børn, som endnu ikke er læsere, eller i en blandet gruppe af børn, bedst forklare af tidlig stavning eller de grundlæggende færdigheder: opmærksomhed på sproglyd og bogstavkendskab. Sénéchals (2017) model beskriver dermed de mekanismer, som er kilden til, at færdighederne opmærksomhed på sproglyde, bogstavkendskab, tidlig stavning, læsning og korrekt stavning bliver hierarkisk indlæret i mere avancerede færdigheder med udviklingen fra forudsætninger til spirende og til mere avancerede færdigheder. Dermed tilbyder modellen præcise forudsigelser om de veje, ad hvilke færdighederne udvikler sig.

1. Tidlig stavning medierer delvist forholdet mellem bogstavkendskab samt opmærksomhed på sproglyde og tidlig læsning.
2. Tidlig læsning er den stærkeste prædiktor af senere stavning, tidlig stavning bidrager også, men i mindre grad.

2.2.4 Konsekvenser for forudsigelse
De tre teoretiske forklaringer af underliggende færdigheder i udviklingen af stavning peger alle på centrale processer bag børns tidlige staveforsøg. Disse forklaringer bygger på samme ideer, men lægger vægten lidt forskelligt.

2.3 Forskning i børnestavning

I dette afsnit præsenterer jeg læseren for børnestavning som forskningsfelt. Afsnittet starter med den tidligste forskning i feltet og kommer dernæst rundt om indsigter fra senere forskning.

Figur 2.1
Eksempler på børnestavning.

<table>
<thead>
<tr>
<th>Bogstav</th>
<th>Bogstavnavn</th>
<th>Ord</th>
<th>Børnestavning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>[eɪ]</td>
<td>come [kəm]</td>
<td>KAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fell [fel]</td>
<td>FALL</td>
</tr>
<tr>
<td>e</td>
<td>[i]</td>
<td>feel [fiːl]</td>
<td>FEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fish [fiʃ]</td>
<td>FES</td>
</tr>
<tr>
<td>i</td>
<td>[aɪ]</td>
<td>like [laɪk]</td>
<td>LIK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>got [ɡɒt]</td>
<td>GIT</td>
</tr>
</tbody>
</table>

Der er tre væsentlige pointer i Reads (1971) arbejde.

1. Børnestavning er børnenes forsøg på at repræsentere de talelyde, de kan identificere i et ord, med de bogstaver, der er lydligt mest lig sproglyden.
3. Børnestavning udvikler sig over tid.

Fundene er vanskelige at generalisere. Dels er børnene i Reads studie ikke repræsentative for børn generelt, da der er tale om børn udvalgt blandt forskerkollegaer og deres netværk. Dels er børnenes

2.3.1 Et tættere blik på børnestavning

Disse fund bliver efterfølgende afprøvet i eksperimentelle designs, hvor det er muligt at manipulere omgivelserne, så kun bestemte forskelle ændres fra betingelse til betingelse. Dermed kan detaljer og sammenhænge belyses klarende end i naturalistiske studier. De eksperimentelle design tager for alvor fart i 80’erne (fx Ehri og Wilce, 1985; Pollo m.fl., 2009; Treiman, 1994; Treiman m.fl., 1993; Treiman m.fl., 1994). Resultaterne peger, som de naturalistiske, på, at børnenes repræsenterer sproglydene på baggrund af fonetiske analyser, og dermed kan det bruges af forondre meget forskellige, fx påvirkes børnestavning af børnenes erfaring med skriftsprogets ydre form. I de stavemåder, som endnu ikke er fonemiske, er hyppigheden af bogstaverne i børnenes repræsentationer påvirket af bogstaverne i børnenes repræsentationer påvirket af bogstavernes hyppighed i det skriftsprog, der omgiver børnenes. Det er således højere hyppige bogstaver i disse skriftlige produktioner bogstaver fra barnets navn, bogstavækkelse eller bogstaver fra alfabetet og hyppige bogstaver i skriftsprogets ydre form.

Den samlede konklusion fra de naturalistiske og eksperimentelle studier er, at børnestavning er karakteriseret ved, at børn klassificerer sproglyde på baggrund af fonetiske analyser og præsenterer dem med bogstaver på princip af lydlige og hyppige bogstaver i skriftsprogets ydre form.

2.3.2 Forudsætninger for børnestavning

Når børnestavning i så høj grad er blevet knyttet til børnenes evne til at integrere opmærksomhed på sproglyde og viden om sammenhængen mellem bogstaver og sproglyde, er det muligt at børnestavning ikke kan skelnes fra disse færdigheder. For at komme tættere på forholdet mellem opmærksomhed på sproglyde, læsning og børnestavning er det nødvendigt at kunne måle kvaliteten af børnestavning. Det er primært stadieteorierne (fx Ehri, 2005, 2017; Hagtvet, 2004), der har dannet grundlag for mål for kvaliteten af børnestavning, enten ved at lade barnets udviklingsstadien i stavning svarer til en score (fx Frost, 2001; Gentry, 1982; Mann m.fl., 1987), eller ved at den fonologiske præcision i børnestavningen scores (fx Byrne og Fielding-Barnsley, 1993; McBride-Chang, 1998).

Scoring, der placerer børnene på et udviklingsstadi, har den fordels, at der er en direkte oversættelse mellem barnets score til de stavemåder, børnene producerer. I Frost (2001) svarer en score på fx fem til overkategorien ”global skrivning” med underkategorien ”ordskrivning (med to eller flere korrekte bogstaver)”. Denne score er nem at forstå betydningen af. En ulempe ved scoringsmetoden er, at skalaen har få trin. I eksemplet fra Frost (2001) er der otte trin. Det betyder, at mange elever vil få samme score, og endvidere kan det være mere end svært at afgøre, om denne score faktisk kan behandles som et skala-mål. Er det rimeligt at antage, at det er lige svært for børnene at udvikle kvaliteten af deres stavning med et point, uanset om de skal bevæge sig fra fx 1 til 2 eller fra fx 3 til 4?

Scoring, der er baseret på den fonologiske præcision i børnestavning, tildeler fx et point for hver fonologisk acceptabel repræsenteret sproglyd. Andre eksempler på en sådan score er at tildle point til fonologisk ikke-acceptabel, men næsten acceptabel, repræsentationer af en sproglyd. Ved sådan en score vil fx et M i stedet for et N være bedre end et H. Denne scoringsmetode har den fordels, at børnenes score kan fordele sig over flere point, end det fx er tilfældet i Frost (2001). En anden fordel er, at en ændring på 1 point, uanset om børnene bevæger sig fra 1 til 2 eller fra 5 til 6, modsvarer den samme forbedring fx endnu ét fonologisk acceptabelt bogstav. Scoringsmetoden kommer på den baggrund tættere på at være et skala-mål.

21

Mål for kvaliteten af børnestavning gør det muligt at se på sammenhængen med andre skriftsproglige færdigheder. En oplagt sammenhæng, som er dokumenteret i flere studier, er den mellem tidlig og sen stavning (fx McBride-Chang, 1998; Treiman m.fl., 2016). Sammenhængen mellem børnestavning og læsning er ligeledes interessant. Denne sammenhæng er ikke en-til-en, fx kan børn ikke altid læse deres egen børnestavning (Burns og Richgels, 1989), og børn bærnestaver, før de kan læse (Mann m.fl., 1987). Forbindelsen mellem børnestavning og læsning er dog ikke kun teoretisk. Relationen ses fx ved, at bogstavkendskab og opmærksomhed på sproglyde, som er kendte prædiktorer for læseudviklingen, forklarer variation i førskolebørns børnestavning (Ouellette og Sénéchal, 2008), og ved, at træning i opmærksomhed på sproglyde ikke blot fremmer læsning, men også stavning (fx Bradley og Bryant, 1985; Lundberg m.fl., 1988; Torgerson m.fl., 2006). Sammenhængen er også vist i langtidsstudier, hvor kvaliteten af børnestavning eller tidlig læsning forudsiger senere stave- og læsefærdighed i de første skoleår (fx Caravolas m.fl., 2001; Frost, 2001; Juel, 1988; Mann, 1993; Mann m.fl., 1987; McBride-Chang, 1998; Ouellette og Sénéchal, 2017; Pan m.fl., 2011; Sénéchal, 2017; Shatil m.fl., 2000; Spector, 1992; Treiman m.fl., 2016; Treiman m.fl., 2019; Treiman m.fl., i manus). Endvidere ser tidlig læsning og børnestavning også ud til at bidrage uniktil at forklare forskelle i senere læse- (fx Caravolas m.fl., 2001; Frost, 2001; Lazo m.fl., 1997; McBride-Chang, 1998; Ouellette og Sénéchal, 2017; Pan m.fl., 2011; Sénéchal, 2017; Treiman m.fl., i manus) og stavefærdighed (Caravolas m.fl., 2001; Frost, 2001; Lazo m.fl., 1997; Ouellette og Sénéchal, 2017; Sénéchal, 2017), men det unikke bidrag fra tidlig læsning og stavning til senere stave- og læsefærdighed er dog mindre velbeskrevet, og fundene er modsatrettede. Flere af studierne finder kun, at senere stavning kan forudsiges af børnestavning eller læsning blandt de bedste børn (fx Caravolas m.fl., 2001; Frost, 2001; Lazo m.fl., 1997), og ikke alle studier finder, at tidlig læse- eller stavefærdighed unikt forudsiger forskelle i senere læsning (fx Shatil m.fl., 2000; Spector, 1992) og/eller stavning (fx McBride-Chang, 1998; Shatil m.fl., 2000; Spector, 1992). De ikke entydige resultater gør, at det ikke kan afvises, at sammenhængen mellem børnestavning og tidlig læsning blot udtrykker den kendte sammenhæng mellem opmærksomhed på sproglyde, bogstavkendskab og senere læsning og stavning (fx Ehri m.fl., 2001). Der er
på den baggrund fortsat brug for mere viden om det unikke bidrag fra børnestavning og tidlig læsning til senere læsning og stavning. Dette er emnet for Studie 2 (se kapitel 4).

2.3.3 Opsamling
Mål for kvaliteten af børnestavning har gjort det muligt at dokumentere en sammenhæng mellem læsning, børnestavning og opmærksomhed på sproglyde. Opmærksomhed på sproglyde er, som Read (1986) foreslog det, nødvendig for at kunne børnestave fonologisk acceptabelt. For børnestavninger af denne art består evidensen i, at opmærksomhed på sproglyde forklarer variation i børnestavning, og at træning af opmærksomhed på sproglyde fremmer kvaliteten af børnestavning. Der er begyndende evidens for, at sammenhængen mellem børnestavning og læsning består af mere end sammenhængen mellem opmærksomhed på sproglyde, bogstavkendskab og læsning, fordi enkelte studier har fundet evidens for, at børnestavning forudsiger læsning ud over bidraget fra opmærksomhed på sproglyde og bogstavkendskab. Evidensen er dog ikke entydig.

Ifølge Sénéchals (2017) Nested Skills Model (se afsnit 2.2) er det integrationen af bogstavkendskab og opmærksomhed på sproglyde, som er nødvendig for fonologisk acceptabel børnestavning, og som derfor trænes, når børn børnestaver, der fører til, at børnene opdager forbindelsen mellem bogstaver og lyde. På den baggrund udvikler børnene indsiget i det alfabetiske princip, som understøtter, at barnet kan begynde at omkode ord og heraf tilegne sig stavefærdighed. Børnenes forsøg med fonologisk acceptabel børnestavning indtager således en særlig position i udviklingen af sikker læsning og stavning.

I Treiman og Kesslers (2014) teoretiske model, IMP (se afsnit 2.2.2), kan børnestavning optræde på alle tidspunktet i udviklingen af stavning. Børnestavning afspejler den viden om indre og ydre mønstre i ortografi og talesprog, som barnet har tilegnet sig. Derfor er det sandsynligt, at ortografiske mål af børnestavning er en unik prædiktor af senere stavning, fordi et sådant mål indfanger de forbindelser, som børnene har tilegnet sig om sammenhængen mellem skriftsproget og talesproget. Ifølge IMP vil en score af børnestavning, der også indfanger variation knyttet til børnenes viden om forbindelser i skriftens ydre form, i højere grad forklares unik variation i senere læsning. Studie 2 (se kapitel 4) i denne afhandling behandler disse spørgsmål.

I forlængelse af forskningen i og om børnestavnings sammenhæng med andre tidlige skriftsproglige færdigheder ligger studier, der undersøger, om undervisning, der bygger på børnestavning, bidrager til at udvikle opmærksomhed på sproglyde, bogstavkendskab og senere stave- og læsefærdighed. Resultaterne fra træningsstudier er interessante, da de kan belyse, om børnestavning blot er forbundet, hvilket er korrelations- og prædiktionsstudiernes begrænsning, eller årsagsforbundet til senere stave- og læsefærdighed. Resultaterne fra træningsstudier er og væsentlige i et praksisperspektiv, da disse studier kan belyse, om undervisning med børnestavning overhovedet har en effekt, og om særlige elementer i undervisning med børnestavning er væsentlige for denne effekt. Denne type af spørgsmål er emnet for Studie 1 (se kapitel 3).
3 Studie 1. (IT)-støttet børnestavning – en effektundersøgelse

I dette kapitel af afhandlingen behandles børnestavning som et redskab i undervisningen. Først præsenterer jeg eksisterende forskning om børnestavning i undervisningen, herunder resultater fra studier, som har implementeret børnestavning i undervisningen og målt effekten af undervisningen. Analysen af undervisningen i effektstudierne og af dens effekt er struktureret med det formål at afdække de betingelser, der kendetegner undervisning, som fremmer kvaliteten af børnestavning og læsning. Dernæst præsenterer jeg læseren for Studie 1, som er en effektundersøgelse, der sammenligner udbyttet af at børnestave med tre typer støtte: indirekte lærerstøtte, IT-støtte og direkte-lærerstøtte.

3.1 Baggrund. Studie 1

3.1.1 Børnestavning i undervisningen

Carol Chomsky (fx 1971; 1979) præsenterer i en række tekster op igennem 70’erne ideen om børnestavning som en god start på undervisningen i skriftsproget. Tanken er, at børnene gennem børnestavning øver sig på at analysere ord i segmenter på fonemniveau, at danne forbindelser mellem bogstaver og sproglyde og dermed på at bruge det alfabetiske princip, som grundlag for at lære at læse. I tråd med Read (1986) er forventningen baseret på resultater fra den samtidige forskning, der viser betydningen af segmenteringsfærdigheder og det alfabetiske princip for læseudviklingen (se afsnit 2.3.2). Chomsky fremhæver fire didaktiske overvejelser:

1. Nogle børn vil have brug for undervisning i at segmentere ord i fonemer, før de kan børnestave.
2. Lærernes rolle er direkte, idet de besvarer spørgsmål og vejleder børnene i at forbedre kvaliteten af deres børnestavning.
4. Børnene skal have mulighed for at udtrykke sig selv, og derfor skal de skrive egne tekster.

Disse tidlige hypoteser om undervisning har påvirket indholdet i den undervisning med børnestavning, der er beskrevet i senere studier, uanset om designet er en undervisningsbeskrivelse eller en effektundersøgelse. Studierne er dog særligt forskellige på to områder: dels i graden, hvormed de vægter børnenes mulighed for at udtrykke sig i egne tekster, og dels i deres forventning til, hvordan børnestavning fremmer læsning og konventionel stavning. Er sammenhængen mellem bogstav og lyd noget, børnene selv skal opdage? Er læsning og stavning noget, der udvikler sig af sig selv, eller kræver det mere direkte støtte?

3.1.2 Kvalitative undervisningsbeskrivelser

Det væsentlige i, at børnene udtrykker sig i egne tekster og selv opdager sammenhængen mellem bogstav og lyd, har særligt været et tema i undervisning, som er dokumenteret i kvalitative undervisningsbeskrivelser. Der er mange eksempler på kvalitative beskrivelser, der vægter læring gennem
opdagelse og fri skrivning (fx Clay, 1975; Ferreiro og Teberosky, 1982; Kamii og Randazzo, 1985). Det er også med dette fokus, at børnestavning introduceres i en dansk kontekst (Bjerre og Friis, 2002; Korsgaard m.fl., 2010). Det er fælles for de kvalitative beskrivelser af undervisning, at de er præget af en forventning om, at barnets børnestavning, med rigelig plads til øvelse og med erfaringen fra læsning, automatisk vil udvikle sig til konventionel stavning. Derfor inddrager de i mindre grad elementer, som direkte underviser børnene i at segmentere ordene på fonemniveau, og som leder opmærksomheden hen mod den konventionelle stavning.

Væsentlige erfaringer som er beskrevet i de kvalitative beskrivelser er, at børn i et anerkendende undervisningsmiljø har mod på at børnestave, kan lide at bruge skriftsproget, får skrevet meget, er stolte af deres produkt, og at stavemåderne udvikler sig over tid. Fordi beskrivelserne er baseret på single-cases, kun i enkelte tilfælde har kvantitative mål for udbuddet og ikke har egentlige kontrolgrupper i deres design, er det ikke muligt at vurdere udbuddet af undervisningen. Det er heller ikke muligt at vurdere den relative væsentlighed af forskellige elementer i undervisningen.

3.1.3 Effektundersøgelser
Effektundersøgelser kan være med til at besvare de ubesvarede spørgsmål, som praksisbeskrivelserne efterlader om væsentlige betingelser for, at undervisning med børnestavning fremmer tidlige skriftsproglige kompetencer. For at få et overblik over resultaterne i eksisterende effektundersøgelser med undervisning i børnestavning og bruge den etablerede viden i designet og forskningssporvågbområderne i indeværende studie har jeg forsøgt at identificere eksisterende effektundersøgelser. Jeg har brugt følgende

procedure for at identificere effektundersøgelse af undervisning med børnestavning: systematisk søgning på databasen LLBA med søgningen: ("Invent* spelling" OR "earl* spelling") AND (study OR intervention* OR training* OR experiment*) AND (kindergarten OR preschool OR child*) AND (test* OR effect* OR evaluat* OR pretest* OR posttest OR progress*) med følgende filtre slået til: fagfællebedømt tidsskrift, artikelsprog: engelsk, dansk, svensk, norsk. Søgningen fandt 272 studier. Disse blev sorteret ud fra abstract efter kriterierne: træningsundersøgelse med eksperimental gruppe med børnestavning og kontrolgruppe, kvantitative mål af tidlige skriftsproglige kompetencer, herunder som minimum mål for kvaliteten af stavning. I de relevante studier blev litteraturlisterne gennemlæst for muligt oversette studier, og de studier, som citerede de relevante studier fra søgning på LLBA, blev også gennemlæst. Denne procedure ledte til 15 effektundersøgelser, som opfyldte kriterierne. Disse er listet i Tabel 3.1, som er et samlet overblik over de 15 identificerede studier, de betingelser resultaterne i studierne er opnået under samt signifikante forskelle mellem deltagergrupperne i de enkelte studier.

De samlede fund fra de 15 identificerede effektstuder for effekter på tidlige skriftsproglige kompetencer gennemgås i følgende rækkefølge: stavning, læsning, opmærksomhed på sproglyde, bogstavkendskab. De betingelser, disse er opnået under, diskuteres løbende, men to betingelser gennemgår i separater afsnit: børnestavning af isolerede ord overfor fri skrivning, langtideffekter.

3.1.3.1 Effekter på tidlige skriftsproglige kompetencer
3.1.3.1.1 Effekter på stavning
I alle studierne i Tabel 3.1 påvises der en effekt af undervisningen på børnenes stavning. Denne effekt er robust over for forskelle mellem studierne i sprog, i sværhedsgraden af ordene i undervisningen, undervisningens organisering i grupper eller individuelt, i varighed af undervisningen, i hvem der er ophav til den støtte, som børnene får, i om børnene har almindelige eller lave forudsætninger og i typen af kontrolgruppe. Det er dog ikke for alle måder at børnestave på, at studierne i Tabel 3.1 finder effekt på stavning. Studierne adskiller sig i den støtte, børnene får til at forbedre kvaliteten af deres børnestavning.
En type af støtte, som undersøges i flere studier i Tabel 3.1, er den, jeg i denne afhandling vil kalde direkte støtte. Direkte støtte er kendtegetnet ved, at den tager udgangspunkt i barnets børnestavning og direkte hjælper børnene til at blive opmærksomme på, hvordan de kan forbedre deres børnestavning i retning mod en mere fonologisk acceptabel stavemåde eller den korrekte stavemåde. Formålet er at rette barnets opmærksomhed mod fonemerne og deres forbindelse til bogstaver for at udvikle kvaliteten af barnets staveforsøg. Direkte støtte kan, efter min overbevisning, kategoriseres som en variation af Treimans (1998) "børnestavning med støtte".

En anden type af støtte, som undersøges i flere studier i Tabel 3.1, er den, jeg i denne afhandling vil kalde indirekte støtte. Indirekte støtte er kendtegetnet ved, at børnene ikke får direkte hjælp til at forbedre kvaliteten af deres børnestavning, men støttes indirekte – enten blot gennem børnestavning, hvor de selv må blive opmærksomme på sproglydene i ordene og selv må knytte disse til deres viden om fonem-grafem-forbindelser, eller ved at de præsenteres for de korrekte stavemåder, og selv må bruge disse som støtte til at forbedre deres børnestavning.

I de følgende afsnit gennemgås evidensen for effekten på stavning af børnestavning med de to overordnede typer af støtte.

3.1.3.1.1 Direkte og indirekte støtte

Fire studier i Tabel 3.1 sammenligner forskellige måder at støtte børnenes børnestavning på. Disse studier finder, at de former for støtte, der direkte støtter børnene i at forbedre deres børnestavning, er bedre end indirekte former for støtte til at udvikle stavning (Cannella, 1991; Levin og Aram, 2013; Rieben m.fl., 2005; Pulido og Morin, 2018).

<table>
<thead>
<tr>
<th>Studie</th>
<th>Alder, sprog, antal, varighed</th>
<th>Grupper</th>
<th>Ord/fri skrivning</th>
<th>Effekter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannella, 1991</td>
<td>5-6 år, engelsk, 50 børn, 30 min./uge i 3 uger</td>
<td>E: BS, SF: Kammerat: G</td>
<td>2-3 selvalgte ord</td>
<td>BS: E>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: BS, SF: Voksen: I</td>
<td></td>
<td>Lave forudsætninger: mest læring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>forbindelser i klassen</td>
<td>historie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: KS, G+blogtav-lyd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>forbindelser i klassen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>s +IKS: G</td>
<td>tekstskrivning</td>
<td>1. kl. eftertest: S, OS, A: E>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: BS, IS: I</td>
<td>5 ord/gang</td>
<td>A: Ingen forskel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: Alm.</td>
<td></td>
<td>Lave forudsætninger: mest læring</td>
</tr>
<tr>
<td></td>
<td>5 år, portugisisk, 108 børn, 15 min., 10 gange over 5 uger</td>
<td>E: Som 2002-studie</td>
<td>Individuelt udvalgte ord</td>
<td>BS, OS: E>K</td>
</tr>
<tr>
<td>Martin og Silva, 2013</td>
<td></td>
<td>K: Geometri</td>
<td></td>
<td>Lave forudsætninger: mest læring</td>
</tr>
<tr>
<td>Martin og Silva, 2016</td>
<td>5-6 år, portugisisk, 90 børn, 15 min., 8 gange over 14 dage</td>
<td>E: Som 2013-studie</td>
<td>Udvælgte ord</td>
<td>BS, A: E>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: Højtlæsning ved voksen</td>
<td>6-8 ord/gang</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2: OS – udvidet: G</td>
<td>5 ord/gang</td>
<td>BK, A: Fremgang for alle grupper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: BK, Tegne: G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouellette, Sénéchal og Haley, 2013</td>
<td>5-6 år, engelsk, 40 børn, 20 min., 2 gange/uge i 8 uger</td>
<td>E1: Som 2008-studie</td>
<td>Udvælgte ord</td>
<td>Efter-test: BS, LAL: E1>E2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2: Som 2008-studie</td>
<td>5 ord/gang</td>
<td>OS, BK: Ingen forskel mellem grupper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2: BS, SF: Voksen, KBS: G</td>
<td>6 ord/gang</td>
<td>S, OS, BK, A: Alle grupper udvikler sig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3: BS, SF: Voksen, KBS+KS: G</td>
<td></td>
<td>S, BK, A: E2>E1, E3, K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: OS: G</td>
<td></td>
<td>OS: K>E1, E2, E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2: Afskrivning: G</td>
<td>6 ord/gang</td>
<td>S, A (ortografiske aspekter): E3>E1, E2 og K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3: BS, SF: Voksen: KS: G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: Tegne: G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénéchal, Ouellette, Pagan og Lever, 2012</td>
<td>5-6 år, engelsk, 59 børn, 20 min., 2 gange/uge i 8 uger</td>
<td>E1: Som 2008-studie</td>
<td>Udvælgte ord</td>
<td>Alle børn har lav OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2: Som 2008-studie</td>
<td>5 ord/gang</td>
<td>BS, LAL: E1>E2, K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: BK, Højtlæsning ved voksen</td>
<td></td>
<td>OS: E1, E2> K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A, BK: Ingen forskel mellem grupper</td>
</tr>
<tr>
<td>Silva og Martins, 2002</td>
<td>5-6 år, portugisisk, 71 børn, 2 uger</td>
<td>E1: OS, BS, SF: Voksen: KBS: I</td>
<td>Udvælgte ord</td>
<td>BS, OS: E1, E2 > K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K: Geometri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silva og Martins, 2003</td>
<td>5 år, portugisisk, 30 børn, 15 min., 8 gange over 14 dage</td>
<td>E1: Som 2002-studie</td>
<td>Individuelt udvalgte ord</td>
<td>BS, OS: E<K</td>
</tr>
</tbody>
</table>

Note: E = Eksperimintel gruppe, K = kontrol, BS = Børnestavning, KS = konventioneel staving, IKS = indirekte konventioneel staving, SF = støtte fra, IS = ingen støtte, KBS = mere kompleks børnestavning, I=Individuel, G=gruppe, S=stavning, A=afkodning, BK=bogstavkendsub, OS=opmærksomhed på sproglyde, LAL=lær at læse.

Der er dog et designmæssigt kritikpunkt til studiet af Pulido og Morin (2018), som gør det svært at vurdere, om effekten i de fire deltagergropper er læreffekter. De fire deltagergropper er tilfældigt fordelt på klasseniveau mellem otte klasser. Det betyder, at det ikke kan afvides, at sammenligningen mellem typer af støtte også er en mere generel sammenligning af undervisningen i de fire klynger af to klasser. Forskerne vurderer ikke den eventuelle indflydelse af lærerne eller klasserne, hvorfor det ikke er sikkert, at forskellene i studiet kan tilskrives forskelle i den eksperimentelle undervisning.

Samlet set understøtter de fire studier, der sammenligner mere direkte støtte med indirekte støtte, at børnestavning med direkte støtte er en fordel for udviklingen af børnernes stavning.

3.1.3.1.1.1 Børnestavning med direkte støtte og ingen børnestavning

Ud over studier, der sammenligner udbyttet af forskellige typer af støtte, så er der på tværs af yderligere ni studier evidens for effekten på stavning af undervisning med børnestavning med direkte støtte i sammenligning med kontrolgrupper, som ikke børnestaver (se Tabel 3.8).

De sidste tre studier, der finder effekt af, at børnene børnestaver med direkte støtte over en kontrolgruppe (Ouellette og Sénéchal, 2008; Ouellette m.fl., 2013; Sénéchal, 2012), finder i modsætning til Silva og Martins (2002), at børnene, i sammenligning med børn, der får undervisning i opmærksomhed på sproglyde, udvikler kvaliteten af deres stavning mest. Fordelen, i disse tre studier, til børnene, der børnestaver over børnene, der træner opmærksomhed på sproglyde, ses også ved, at førstnævnte adskiller sig fra kontrolgruppen, hvilket ikke er tilfældet fra gruppen, der har trænet opmærksomhed på sproglyde.

Samlet indikerer resultaterne af overstående studier, at børn, der børnestaver med direkte støtte, udvikler kvaliteten af deres stavning.

3.1.3.1.1.2 Børnestavning med indirekte støtte og ingen børnestavning

Der er mindre evidens for effekten af indirekte støtte. Der er to studier, som finder evidens for, at børnestavning med mere indirekte støtte kan udvikle børnernes stavning (Clarke, 1988; Hofslundsengen m.fl., 2016). I begge studier skriver børnene tekster med børnestavning med indirekte støtte, men i Hofslundsengen m.fl. (2016) skriver børnene også udvalgte ord. På disse ord får børnene direkte støtte.

Som tidligere gennemgået (se afsnitt 3.1.3.1.1.1) finder studierne, som sammenligner direkte og indirekte støtte, ikke evidens for effekten af indirekte støtte. Der er således mere evidens for, at denne støtteform ikke er en effektiv måde at udvikle børnenes stavning.

3.1.3.1.1.2 Scoringsteknik og direkte støtte
Selv om studierne generelt finder effekt på stavning og særligt af børnestavning med direkte støtte, så er det dog ikke alle måder at score børnestavning på, hvor studierne i Tabel 3.1 finder effekt på stavning. Studierne, som finder effekt af direkte støtte, adskiller sig på, hvilke aspekter af stavning de finder effekt på.

Flere studier viser effekten med stavemål, som er følsomme for udviklingen i fonologiske aspekter af børnenes stavning (Cannella, 1991; Levin og Aram, 2013; Martins og Silva, 2006; Pulido og Morin, 2018; Silva og Martins, 2002; Silva og Martins, 2003), andre med stavemål, som er følsomme for udvikling i både fonologiske og ortografiske aspekter i stavning, fx ved at den højeste score på skalaen modsvarer korrekt stavning (Hoflundsengen m.fl., 2016; Ouellette og Sénéchal, 2008; Ouellette m.fl., 2013; Sénéchal m.fl., 2012), og andre med stavemål, som alene måler udvikling på ortografiske aspekter af stavning (Martins m.fl., 2013; Martins m.fl., 2016).

Der er således evidens for, at børnestavning udvikler de fonologiske aspekter af stavning, men også de ortografiske aspekter i stavning er der evidens for effekt på. I forhold til de ortografiske aspekter er det i et dansk perspektiv mest interessant, da dansk er en dyb ortografi, forstået som kompleks i forbindelserne mellem fonemer og grafem (Seymour m.fl., 2003), at se, om studier med børn, som børnestaver i dybe ortografier, finder effekt på ortografiske aspekter. Her er det kun studiet af Rieben m.fl. (2005), der i den dybe franske ortografi (Seymour m.fl., 2003) finder effekt på ortografiske aspekter af stavning.

Evidensen for effekt af børnestavning med direkte støtte på ortografiske aspekter af stavning i dybe ortografier er altså meget begrænset, mens der er mere evidens for effekten på fonologiske aspekter af stavning.

3.1.3.1.2 Effekter på læsning
Ti af de 11 studier, der undersøger effekten på læsning, finder effekt på læsemålet eller dele af læsemålet (se Tabel 3.1). Effekten på læsning undersøges i færre studier og er lidt mindre entydig end effekten på stavning. I nedenstående gennemgang præsenteres resultaterne sorteret efter typen af kontrolgruppe.

3.1.3.1.2.1 Børnestavning og ingen børnestavning
I fire af de studier, der finder effekt på læsning, kan det ikke afvises, at effekten på læsning skyldes, at kontrolgruppen endnu ikke har modtaget egentlig undervisning, som er relevant for udviklingen af læsning (Albuquerque og Martins, 2016; Hoflundsengen m.fl., 2016; Martins m.fl., 2013; Martins m.fl., 2016), og samme effekter kunne derfor tænkes at have været opnået med fx systematisk træning af opmærksomhed...

3.1.3.1.2.1 Scoringsmetoder
Effektstørrelserne for fremgangen i læsning ved fonologiske scoringsmetoder er stor i studier, der sammenligner udbyttet af børnestavning med en kontrolgruppe, hvor børnene endnu ikke får egentlig undervisning i skriftsproget (d = 1,77, partial η² = 0,49 og 0,23). Dette understøtter at der er effekt i den fonologiske kvalitet af læsning. Når scoringen er ortografisk, så varierer effektstørrelserne fra lille til stor (d = 0,36; 1,06; 1,12, r = 0,69). Evidensen for effekt i den ortografiske kvalitet i læsning er således mindre stærk. Dette kan tilskrives mange forskelle mellem studier, hvoraf én kan være forskelle i læsetesten.

3.1.3.1.2.2 Opsamling børnestavning og ingen børnestavning
Fra studier, hvor børnene i kontrolgruppen endnu ikke modtager egentlig læseundervisning, er der evidens for, at børnestavning med direkte støtte - eller en kombination af direkte og indirekte støtte - kan udvikle børnenes læsning. Forskellen i effektstørrelsen for fremgangen i læsning i de fire studier, kan dels forklare af scoringsmetoden. Ved de fonologiske mål er effekten stor. Scoringsmetoden kan ikke forklare forskellen i effektstørrelsen for de ortografiske mål, men forskelle på tværs af studier i læsetestens sværhedsgrad er måske en forklaring. I alle studier er der evidens for effekt på læsning. Det kan blot ikke afklares, om effekten afspejler den generelt positive effekt af tidlig relevant læseundervisning, eller er unik for børnestavning med direkte støtte.

3.1.3.1.2.3 Børnestavning og anden relevant undervisning
I to (Clarke, 1988; Pulido og Morin, 2018) af de seks studier, som finder effekt på læsning i sammenligning med anden relevant undervisning (se Tabel 3.1), kan effekten af undervisningen ikke skelnes fra generelle forskelle mellem grupper i studiet eller fra lærereffekter. Dette skyldes, at hver eksperimentel gruppe består af elever fra to klasser, og at analyserne af data ikke tager højde for bidraget fra klasse eller lærerne.

De sidste fem studier, som har en kontrolgruppe, der får undervisning, der kan udvikle læsning enten i klassen eller i den eksperimentelle undervisning, tager i deres design højde for klasse- og lærereffekter. Fire af disse finder effekt på læsning (Rieben m.fl., 2005; Ouellette og Sénéchal, 2008; Ouellette m.fl., 2013; Sénéchal m.fl., 2012), og én finder ikke effekt på læsning (Levin og Aram, 2013).

3.1.3.1.2.4 Direkte og indirekte støtte

3.1.3.1.2.2.2 Opsamling børnestavning og anden relevant undervisning

Den samlede evidens indikerer således, at børnestavning med direkte lærerstøtte kan være en vej til at udvikle læsning. Evidensen er dog ikke entydig. Scoringsmetode og læsetestens design ser ud til at være af betydning. I de fem studier, der sammenligner børnestavning med anden relevant undervisning, finder forskerne kun effekten på læsning ved mål, som er følsomme for børnenes tidlige læsning enten ved at være for trænede ord (fx Rieben m.fl., 2005) eller indlæringsmål (fx Ouellette og Sénéchal, 2008). At effekten på læsning ser ud til at kunne tilskrives udvikling af helt spænd læsefærdighed, er i overensstemmelse med Read og Chomskys tanke (se afsnit 3.1) om, at børnestavning understøtter tilegnelsen af det alfabetiske princip, og at denne viden kan overføres og anvendes af børnene i den spæde læsning.

3.1.3.1.3 Effekter på opmærksomhed på sproglyde

For de 11 studier, der undersøger effekten af undervisning med børnestavning på opmærksomhed på sproglyde, er billedet ikke entydigt (se Tabel 3.1). I nedenstående gennemgang præsenteres resultaterne sorteret efter typen af kontrolgruppe.

3.1.3.1.3.1 Børnestavning og træning af opmærksomhed på sproglyde

I de fem studier, der undersøger effekten af undervisning med børnestavning i sammenligning med træning af opmærksomhed på sproglyde, er resultaterne ikke entydige. I alle studier børnestaver børnene med direkte støtte.

I tre studier (Ouellette m.fl., 2013; Sénéchal m.fl., 2012; Silva og Martins, 2002) finder forskerne, at begge grupper udvikler deres opmærksomhed på sproglyd sammenligneligt. Børn, som børneskriver med direkte støtte i studierne af Sénéchal m.fl. (2012) og Ouellette m.fl. (2013), lærer dog fortsat at læse flere ord end børnene, som træner opmærksomhed på sproglyd. På den måde er der i træningsstudierne evidens for, at effekten på læsning af børnestavning med direkte støtte ikke alene kan forklares med en positiv udvikling af opmærksomhed på sproglyde (se afsnit 2.3.2).

31

3.1.3.1.3.2 Børnestavning og ingen træning i opmærksomhed på sproglyde

Den anden type studier vurderer effekten af børnestavning i forhold til en kontrolgruppe uden træning af opmærksomhed på sproglyde.

En væsentligste årsag til forskelle i effekt på opmærksomhed på sproglyde ser således ud til at være, om kontrolgruppen laver fonologisk træning eller ej.

3.1.3.1.3.3 Direkte og indirekte støtte

Fem studier finder ingen effekt på opmærksomhed på sproglyde af børnestavning med direkte støtte (Ouellette m.fl., 2013; Pulido og Morin, 2018; Rieben m.fl., 2005; Sénéchal m.fl., 2012; Silva og Martins, 2002).

To studier (Levin og Aram, 2013; Rieben m.fl., 2005) finder endvidere at indirekte støtte ikke udvikler opmærksomhed på sproglyde.

Denne gennemgang af studiernes fund sorteret efter den støtte, børnene får, mens de børnestaver, viser ingen evidens for, at indirekte støtte kan udvikle opmærksomhed på sproglyde. For børnestavning med direkte støtte er evidensen helt tvetydig, hvilket jeg tolker som et udtryk for, at det er mere væsentligt for resultatet om børnenes udvikling af opmærksomhed på sproglyd, om kontrolgruppen træner denne færdighed eller ej.

3.1.3.1.4 Effekter på bogstavkendskab

Der er meget spænd evidens for, at børnestavning med direkte støtte er bedre for udvikling af børnenes bogstavkendskab end indirekte støtte, men ikke mere effektivt end træning i opmærksomhed på sproglyde, der inkluderer bogstaver.
3.1.3.2 Effekter af karakteristika ved undervisningen med børnestavning

3.1.3.2.1 Effekt af ord- vs. tekstskrivning

Da effekten i disse studier ikke kan ses løsrevet fra den samlede træning, er det ikke muligt at vide, om en lignende effekt kan opnås uden fx skrivning af isolerede ord med direkte støtte. Det er også muligt, at effekten på i hvert fald stavning, havde været større, hvis støtten havde været mere direkte, som fx resultaterne fra Levin og Aram (2013) viser den er for stavning, når børnene skriver ord i isolation.

3.1.3.3 Langtidseffekter

Det er kun enkelte af studierne i (se Tabel 3.1), der har undersøgt effekt af træningen over længere tid (Albuquerque og Martins, 2016; Hofslundsengen m.fl., 2016; Ouellette m.fl., 2013). Resultaterne fra disse studier peger i retning af, at effekten af undervisningen kan spores ind i det efterfølgende skoleår for stavning. For læsning og opmærksomhed på sproglyde ses effekten kun i studierne, hvor kontrolgruppen endnu ikke har fået egentlig undervisning i centrale forudsætninger for læsning. Ouellette m.fl. (2013) finder effekt på stavning med en kontrolgruppe, der har fået undervisning i opmærksomhed på sproglyde. I dette studie er der test, der bruges til at måle langtidseffekter, meget undervisningsnær

3.1.4 Opsamling

Forskellene mellem forskellige studier bunder i mange faktorer, også andre end dem, som jeg har trukket frem i ovenstående gennemgang, hvorfor konklusionerne må drages med forbehold for de mange forskelle, der også kan have været årsag til forskelle imellem studier, men som ikke er identificeret i ovenstående gennemgang.

Ikke alle studier har effekt på alle tidlige skriftsproglige færdigheder, hvilket kan afspejle, at nogle måder at arbejde med børnestavning på er mere effektive end andre, eller at nogle måder at måle fremgange på er mere fæltsomme. Her viser studier, som sammenligner forskellige måder at arbejde med børnestavning på, en tendens til at direkte støtte er mere effektiv end indirekte støtte for udviklingen af stavning, læsning og bogstavkendskab. Forskelle i måder at undervise i børnestavning er dog kun i meget begrænset omfang belyst, og derfor er konklusionerne om forskellenes betydning endnu ikke støttet af meget evidens.

Effekten af undervisning med børnestavning indikerer også, at børnestavning er andet og mere end træning af opmærksomhed på sproglyde, da undervisningen i sammenligning med træning af opmærksomhed på sproglyde har større effekt på stavning og læsning.

Der er også resultater, som tyder på, at børnestavning ved fri skrivning kan fremme tidlige skriftsproglige færdigheder. Disse studier er færre, og effekten kan endnu ikke skelnes fra effekten af sideløbende undervisning i sproglyde (Canella, 1988) eller samtidig børnestavning med direkte støtte (Hofslundsengen m.fl., 2016).

Der findes mig bekendt endnu ikke studier, der dokumenterer effekten af undervisning med børnestavning med indirekte støtte, uden at børnene sideløbende børnestaver enkeltord med direkte støtte (Hofslundsengen m.fl., 2016). Effekten af undervisningsformen er interessant i en dansk kontext, da denne undervisningsform med børnestavning med indirekte støtte i fri tekst minder om de danske metoder “Opdagende skrivning” (Korsgaard m.fl., 2010) eller “Børnestavning” (Bjerre og Friis, 2002), som er de eneste danske beskrivelser af undervisning med børnestavning. Indeværende studie dokumenterer ikke deres udbredelse, men børnestavning er beskrevet i vejledningen til børnehaveklassen (kilde: https://arkiv.emu.dk/sites/default/files/Vejledning%20b%C3%B8rnehaveklassen.pdf), så det er sandsynligt, at børnehaveklasseledere og læsevejledere bruger den litteratur, der er om emnet, som inspiration for undervisningen. Denne antagelse understøttes af, at denne afhandlings forfatter har set Korsgaard m.fl. (2010) som henvisning på flere litteraturlister ved læreruddannelsens danskfag og læsevejlederuddannelsens første moduler. Det er derfor ikke usandsynligt, at denne form for børnestavning er udbredt i danske børnehaveklasse. Der mangler dog stadig evidens for effekten af børnestavning i frite tekster med indirekte støtte fra en træningsundersøgelse med et eksperimentelt design, hvor effekten kan adskilles fra børnestavning med direkte støtte.

Studierne i Tabel 3.1 undersøger direkte støtte, der kommer fra voksne og klassekammerater, og finder at den direkte støtte generelt er effektiv, hvilket indikerer, at den direkte støtte kan arrangeres anderledes end som støtte fra en lærer. Støtte fra andre end lærere kan være interessant, dels for at undersøge, om den er mere effektiv, eller om den er sammenligneligt effektiv, men potentielt kan gøre elevernes arbejde mere selvstændigt og dermed frigive tid hos læreren. I det kommende afsnit sandsynliggøres det, at computerbaseret træning med det rette design kan understøtte udviklingen af tidlige skriftsproglige kompetencer. Endvidere beskriver afsnittet udviklingen af en talesyntese til oplæsning af børnestavning, som en alternativ måde at støtte børnene i at udvikle kvaliteten af børnestavning.

3.2 (IT)-støtte. Studie 1

Resultaterne fra flere af effektundersøgelserne (se afsnit 3.1.3) underbygger, at der er en positiv effekt af børnestavning, hvor børnene modtager støtte rettet mod at forbedre kvaliteten af deres børnestavning. Denne støtte er både blevet givet af voksne, klassekammerater eller en kombination af disse.

Den voksenstyrende støtte, der er tilpasset det enkelte barns børnestavningsforsøg, kræver, at lærerne har kendskab til, hvad der er gode bud på sammenhænge mellem bogstaver og sproglyde, og hvilke sproglyde børnene skal vejledes i at identificere og repræsentere. Støttens kræver derfor, at læreren tager sig tid til at vejlede den enkelte elev ud fra det nødvendige kendskab til den tidlige skriftsproglige udvikling og sammenhængen mellem ortografien og talesproget.
Enkelte studier i afsnit 3.1.3 viser, at støtte fra klassekammerater også kan have positive effekt (fx Albuquerque og Martins, 2016). Der er således nogen evidens for, at også mindre indsigtspusler eller professional støtte kan fremme børnenes udbytte af at børnestave. I en klasserumsmængelæng er det interessant at undersøge om alternative måder at vejlede børnene på kan have effekt på tidlig skriftspråglige færdigheder. Dette er væsentligt, da læren skal nå meget, og andre kilder til støtte, der er effektiv, kan hjælpe læren i arbejdet med, at alle elever børnestaver på en måde, der understøtter, at de udvikler deres tidlige skriftspråglige kompetencer.

3.2.1 Udviklingsarbejde. Design af talesyntese til Studie 1

En mulig årsag til, at børnestavning kan være et væsentligt element i undervisning, der har til formål at udvikle børns tidlige skriftsprøglige færdigheder, er muligheden, som børnestavning giver, for at integrere opmærksomhed på sproglyde og kendskab til bogstavernes navn og lyd. Argumentet er, at denne integration giver barnet anledning til at opdage det alfabetiske princip (Sénéchal, 2017). I Ehris (fx 2005) teori om udviklingen af læsning og stavning er tilegnelsen af det alfabetiske princip omdrejningspunktet for udviklingen af sikker stavning og læsning.

En talesyntese der, af hensyn til kvaliteten i oplæsning af sammenhængende tekster, er kodet til at læse samme bogstav med forskellig lyd i forskellige sammenhænge, er derfor en potentielt problematisk måde at læse børnestavning højt. Den vil, fordi den læser samme bogstav med forskellige lyde, sandsynligvis ikke understøtte, at børnene opdager det grundlæggende princip om, hvordan skriften repræsenterer talesproget, det alfabetiske princip, men i stedet introducere barnet til mere komplekse sammenhænge mellem det danske talesprog og ortografien. Dette er problematisk, da barnet så, på et tidspunkt hvor barnet endnu ikke har forstået eller mester skriften grundlæggende princip, skal til at tilegne sig mere komplekse sammenhænge mellem talesprog og skriftsprog.

En talesyntese, der derimod læser samme bogstav på samme måde hver gang, kunne måske være en bedre måde at læse børnenes børnestavning op på, så talesyntesen hjælper dem til at tilegne sig det alfabetiske princip, som siger, at hvert fonem svarer til et grafem. En sådan oplæsning vil dog kun være en tilnærmelse til det alfabetiske princip, da de fonem, der modsvarer grafemerne, har forskellige udtalevarianter, fx er både [e] og [ɛ] varianter af fonemet /e/ (Grønnum, 2005). Disse varianter ses fx i ordene bed [beɒd] og hest [hest], som begge har /e/-fonemer. Børnene vil med en oplæsning, der hver gang tildeler samme udtale af fonemet, fx [e] til grafemet e, derfor kun introducere børnene for et udvalg af de sammenhænge mellem grafemer og sproglyde, som er i overensstemmelse med et alfabetisk princip.

Dette er dog ikke nødvendigvis problematisk. Der er nemlig evidens for, at børn ikke behøver at blive introduseret for alle disse sammenhænge for at kunne anvende det alfabetiske princip selvstændigt. I en dansk undersøgelse, som dog ikke brugte talesyntese som et undervisningsredskab, viste Elbro og Petersen (2004), at systematisk undervisning i børnehaveklassen i opmærksomhed på forlyd knyttet til bogstaver kunne fremme læsning for børn i risiko for læsevanskeligheder. Effekten kunne så sent som i syvende klasse spores i bedre læsning og læsehastighed hos risikobørn, der fik denne undervisning sammenlignet med dem, der ikke gjorde. Undersøgelsens uden talesyntese viser således, at arbejdet med udvalgte sammenhænge mellem grafemer og forlyde kan være nok til at sætte børnenes læseudvikling i gang. Det er derfor ikke usandsynligt, at en syntese, der læser børnestavning højt på en måde, der understøtter børnene i at opdage udvalgte sammenhænge mellem fonem og grafem, er nok til, at børnene forstår princippet og selv kan anvende det til at tilegne sig andre sammenhænge.

Fonem-grafem-forbindelser i talesyntesen
Hvilke sproglyde skal børnene så introduceres til? Elbro og Petersen (2004) valgte sproglyde i forlyd. I dansk har vi ifølge Grønnums (2005) analyseprincipper 11 vokalfonemer og 15 konsonantfonemer. Alle konsonantfonemer optræder i forlyd og i denne position svarer deres standardudtale i høj grad til dele af bogstavets navn og den hyppigste udtale af grafemet, når dette er første bogstav i ordet. Dette gælder for /b d f g h j k m n p s t v/ men ikke for /r/ som udtales [u] i forlyd, hvilket faktisk svarer til den hyppigste udtale af grafemet, når det er første bogstav i et ord, men ikke til lyden i grafemets bogstavnavn (se bilag 8.1.1). For konsonantfonemerne stemmer udtalevariationen i forlyd altså i høj grad overens med dele af lyden i bogstavnavnet og den hyppigste udtale af grafemet, når det står som første bogstav i et ord. Grafemerne c q w x z er knyttet til fonem, som også repræsenteres med andre grafemer. For alle disse grafemer, undtagen c, er der overensstemmelse mellem dele af lyden i bogstavnavnet og den hyppigste
udtale af grafemet, når det står som første bogstav i et ord. For q w x z svarer denne hyppigste udtale til fonemer, som også er knyttet til andre grafemer, fx er den hyppigste udtale af grafemet q sproglyden [k], som er knyttet til fonemet /k/, der også er knyttet til grafemet k. Det betyder, at børn kan tolke disse grafener som alternative måder at repræsentere sproglydene [k v s]. For grafemet c er den hyppigste udtale, når bogstavet er første bogstav i et ord, ikke i overensstemmelse med lyden i bogstavnavnet, men modsvarer udtalen af fonemet /k/. Grafemet c udtales dog næsten lige så ofte [s], hvilket modsvarer udtalen af fonemet /s/. Grafemet c kan på den måde ses som en alternativ måde at repræsentere [k] og [s] i forlyd.

En syntese, der udtaler konsonantgrafemerne med deres hyppigste lange udtale i forlyd, vil derfor vise børnene sammenhængen mellem konsonantfonemernes udtale i forlyd og grafemer. De samme sammenhænge, som Elbro og Petersen (2004) lærte børnene i deres undervisning. Syntesen vil med denne oplæsningsmåde også vise, at for grafemerne c, q, w, x, z har samme udtale som fonemerne /k v s/.

Udtalen af den lange variant af fonemet svarer for /a e i o y ø u ø/ både til den stødvokal, som er bogstavnavnet for grafemerne a e i o u y æ ø å, og til den hyppigste udtale af disse, når de står først i ordet og udtales som lange vokaler. Dette er dog ikke tilfældet for den lange variant af fonemet /æ/, som ikke svarer til nogle bogstavnavne (se bilag 8.1.2).

En syntese, der udtaler vokalgrafemer med deres hyppigste lange variant i forlyd, vil derfor vise børnene sammenhængen mellem alle lange, på nær et, fonemers udtale i forlyd og grafemerne a e i o u y æ ø å. Syntesen vil med denne oplæsningsmåde ikke kunne vise en sammenhæng mellem fonemet /ø/ og et grafem. For den korte variant af vokalfonemerne er fonemets udtale i forlyd også for en stor andel af fonemerne i overensstemmelse med udtalen af vokalfonemets bogstavnavn. Dog har både /a o ø/ to udtalevarianter i forlyd. For /a/ og /o/ modsvarer kun den ene lyden fra bogstavnavnet. For /a/ er artikulationen af [a] dog en anelse anderledes end for [æ], som er den variant af /a/, der optræder i bogstavnavnet, men da [a] ikke har en modsvarende lang variant, kan den ses som en kort variant af [æ]. For /o/ modsvarer hverken den ene eller den anden udtale vokallyden i bogstavnavnet. Når de korte vokaler påvirkes af et efterfølgende /r/, så ændres udtalen, så den ikke er i overensstemmelse med vokallyden i bogstavnavnet i /a ø/. Den korte version af fonemet /ø/ er ligesom den lange ikke i overensstemmelse med vokallyden i nogle bogstavnavne (se bilag 8.1.2).

En syntese, der udtaler vokalgrafemer med deres hyppigste lange variant i forlyd, vil derfor vise børnene sammenhængen mellem en lang variant af den korte vokal som de korte vokalfonemer /a e i o u y ø/ udtales med i forlyd. Men en sådan syntese kan ikke lære børnene sammenhængen mellem kort /ø/ og dennes udtalevarianter eller mellem kort /o/ og [s] eller mellem kort /a/ og [ɑ], og endelig kan syntesen fortsat ikke vise en sammenhæng mellem fonemet /ø/ og et grafem. De variationer, der opstår i vokalfonemerne /a ø/ som følge af, at vokalen er efterfulgt af et /r/, kan en syntese, der udtaler vokalgrafemerne med deres hyppigste lange variant heller ikke vise børnene.
For vokalgrafemer, der står som første bogstav i et ord, er den hyppigste korte udtalevariant for seks grafemer, a e i o y å, ikke i overensstemmelse med vokalkvaliteten i bogstavnavnet og heller ikke med fonemets udtale i forlyd. For alle disse seks vokalgrafemer er der dog en udtalevariant, som svarer til den i vokalgrafemets bogstavnavn og fonemets udtale i forlyd – denne variant er blot ikke den hyppigste. For de resterende tre vokalgrafemer, u æ ø, er den hyppigste korte udtalevariant derimod i overensstemmelse med vokalkvaliteten i bogstavnavnet og fonemets udtale i forlyd. Disse tre grafemer udtales dog også alle tre på måder, som ikke er i overensstemmelse med vokalkvaliteten i bogstavnavnet. Disse udtalevarianter er blot mindre hyppige (se bilag 8.1.2).

En syntese, der udtaler vokalgrafemer med deres hyppigste lange variant, når de står som første bogstav i ordet, vil derfor vise børnene sammenhængen mellem en lang variant af den korte vokal, som grafemerne u æ ø hyppigst udtales, som når den står først i ordet. For vokalgrafemerne a e i o y å vil syntesen vise sammenhængen mellem en lang variant af den korte vokal, som disse grafemer udtales som, når grafem står først i ordet, men udtalen af grafemet i denne position er for disse seks grafemer ikke den hyppigste.

De sammenhænge, som en syntese, der udtaler vokalgrafemer med deres hyppigste lange variant, når de står som første bogstav i ordet, vil kunne vise børnene, er kun en mindre andel af de sammenhænge, der er mellem vokalfonemer og vokalgrafemer. Men ligesom Elbro og Petersen (2004) kun læste børnene nogle sammenhænge mellem fonem og grafem, men alligevel satte gang i børnenes læseudvikling, så er det ikke usandsynligt, at en syntese, der viser et afgrænset antal sammenhænge, vil kunne opløse børnestavning på en sådan måde, at børnene lærer om nok sammenhænge mellem fonem og grafem til at kunne anvende denne viden som grundlag for at tegne sig fuld indsigt i det alfabetiske princip.

På baggrund af denne gennemgang vurderes det, at en syntese, som viser børnene sammenhængen mellem konsonantgrafemerne og deres hyppigste udtale i forlyd og samtidig viser børnene sammenhængen mellem vokalgrafemer og deres hyppigste lange udtalevariant, når de står som første bogstav i ordet, vil introducere børnene til et udsnit af sammenhænge mellem grafemer og fonemer, som både er hyppige i forlyd og svarer til dele af bogstavnavnet.

En syntese, der tildeler hvert grafem en konsistent udtale svarende til dele af lyden fra bogstavnavnet, kunne på den måde være en rimelig måde at introducere børnene for det alfabetiske princip. Særligt i sammenligning med en almindelig syntese, som vil læse børnestavning højt på en måde, hvor sammenhængen mellem grafem og sproglyde ikke er stabil. De to forskellige måder at læse på er illustreret i Figur 3.1.
Figur 3.1
Oplæsning med almindelig talesyntese og ønsket oplæsning ved børnestavning af ordet *heks*.

<table>
<thead>
<tr>
<th>Stavemåde</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oplæsning med almindelig talesyntese</td>
<td>['he:st]</td>
<td>['heg']</td>
<td>['heg']</td>
<td>['heg']</td>
</tr>
<tr>
<td>(tolkes i analogi til anlæg eller æng)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ønsket oplæsning med talesyntese</td>
<td>['he:st']</td>
<td>['heg']</td>
<td>['heg']</td>
<td>['heg']</td>
</tr>
</tbody>
</table>

Eksempel 1

<table>
<thead>
<tr>
<th>Stavemåde</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oplæsning med almindelig talesyntese</td>
<td>['he:st']</td>
<td>['heg']</td>
<td>['heg']</td>
<td>['heg']</td>
</tr>
<tr>
<td>(tolkes i analogi med leg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ønsket oplæsning med talesyntese</td>
<td>['he:st']</td>
<td>['heg']</td>
<td>['heg']</td>
<td>['heg']</td>
</tr>
</tbody>
</table>

Eksempel 2

Note. To eksempler på børnestavning af ordet *heks* med oplæsning. Begge talesynteser læser, hver gang barnet har skrevet et nyt bogstav. Figuren illustrerer, hvordan bogstav-lydbindelserne ved den almindelige talesyntese ændres, mens barnet skriver, enten ved at tilføje stød, ved at skifte vokalkvalitet, eller ved at udtalen af bogstavel *g* er baseret på lydprincippet for bogstavfølger.

En oplagt udfordring ved en syntese, der konsekvent læser samme grafem med samme sproglyd, er dog, at syntesen kan vildledde børnene. Et barn, der skriver HEST, vil fx få læst ['he:st], hvilket ikke bekræfter barnet i, at han/hun har stavet korrekt. Dette problem må nødvendigvis adresseres i designet af en talesyntese, så børnene bekræftes i, at de har stavet korrekt, både når de har produceret en fonologisk plausibel stavning, og når de har stavet korrekt.

3.2.1.2 Syntesetyper

For at komme nærmere, hvilken talesyntese der ville kunne resultere i den ønskede oplæsning af børnestavning, som er illustreret i Figur 3.1, er det relevant at undersøge, hvilken type de almindelige synteser er? En grundlæggende forskel på typer af talesynteser er, om de er difon- eller unit-selection-synteser. Fælles for begge typer af synteser er, at de omdanner bogstaver til talesprog via de samme underliggende processer: tekstanalyse og syntese af bølgeform (Jurafsky og Martin, 2014), men disse processer håndteres forskelligt i de to typer af synteser (se Figur 3.2).
Figur 3.2
Difon- og unit-selection-syntesers håndtering af processerne tekstanalyse og syntese af lydenheder.

<table>
<thead>
<tr>
<th>Proces</th>
<th>Tekstnormalisering:</th>
<th>Fonetisk analyse:</th>
<th>Syntese af lydenheder</th>
</tr>
</thead>
<tbody>
<tr>
<td>f.eks. = for eksempel</td>
<td>Rigtige ord: Udtaleordbog \rightarrow fx leg = ['løj']</td>
<td>Genererer lydenheder: Trækker lydenheder sammen fra en optaget database</td>
<td></td>
</tr>
<tr>
<td>OK = okay eller "læs som bogstavnavne"</td>
<td>Ukendte ord: Grafem til fonem baseret på udtalesandsynlighed inden for et givent antal bogstaver (bredde)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit-selection-Syntese</td>
<td>Koden er ikke tilgængelig: Omkoder forkortelser og tal og lignende til bogstavstrenge</td>
<td>Koden er ikke tilgængelig: Bredden er så stor som mulig</td>
<td>Trækker lydenheder sammen af så store enheder som muligt</td>
</tr>
<tr>
<td>Difon</td>
<td>Ingen tekstnormaliseringskode</td>
<td>Koden er tilgængelig med hensyn til bredden som grafem-til-fonem-udtaleandsynligheden baserer på: Bredden kan defineres</td>
<td>Trækker lydenheder af størrelsen difoner sammen</td>
</tr>
</tbody>
</table>

De almindelige synteser, som er nævnt i dette kapitel, er unit-selection-synteser. Fordelen ved unit-selection-syntesen er, at den er almindelig udbredt og kan erhverves billigt. Ulempen er jævnfør Figur 3.1 og Figur 3.2, at denne type af syntese ikke tildeler samme grafem samme sproglyd, hvilket dels skyldes kombinationen af, at den danske ortografi bygger på flere principper end det alfabetiske princip (Elbro, 2014), og at syntesen omkoder fra grafem til fonem på baggrund af så stor brede som muligt, og dels skyldes at unit-selection-syntesen laver en tekstnormalisering.

3.2.2 Valg og design af syntese
Figur 3.3
Analyse af mulighed for operationalisering af formål med oplæsningen.

<table>
<thead>
<tr>
<th>Formål med oplæsning</th>
<th>Kendteган ved syntesen</th>
<th>Krav til syntesen</th>
<th>Operationalisering (unit/dilon)</th>
<th>M/IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understøttet, at børnene bliver opmærksomme på det alfabetiske principl</td>
<td>Læs konsekvent samme grafem med samme fonem</td>
<td>1a) Tekstnormalisering skal kodes så tekst input tekst output</td>
<td>Unit</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Læs grafem med a) for konsonantgrafemer: den hypotetiske udtalevariant, når bogstavel står forst i ordet, b) for vokalgrafemen: den hypotetisk udtalevariant med lang vokal, når bogstavel står forst i ordet</td>
<td>1b) Normaliseret tekst skal omdannes til fonemstrang ved konsekvent at omkode hvert grafem til samme lyd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understøttet, at børnene oplever processen i at danne syntese af de sproglyde, der er knyttet til grafemene</td>
<td>Læs op ved at danne syntese af sproglyde under skrivningen, så børnene hører syntesen af hele bogstavelstrangen, hver gang de tilføjer et bogstav til deres børnestavning</td>
<td>2) Kode, som foreskrives, hvordan syntesen skal læses højt</td>
<td>Unit</td>
<td>IM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dilon</td>
<td></td>
</tr>
<tr>
<td>Rettet børnernes opmærksomhed mod overflødige eller manglende bogstaver og skabe et inbold for arbejde på at forbedre stavemåden</td>
<td>Læs op med langsamt taletempo Læs konsekvent samme grafem med samme fonem</td>
<td>3a) Kode oplæsningstempoet som 1a og 1b</td>
<td>Unit</td>
<td>IM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3b) Som 1a og 1b</td>
<td>Dilon</td>
<td></td>
</tr>
</tbody>
</table>

Note. M=operationalisering er mulig, IM=operationalisering er ikke mulig.
Ikke alle synteser kan oplæse børnestavning på en måde, der konsekvent peger på bestemte sammenhænge mellem grafem og fonem. Dette karakteristikum ved oplæsning kan potentielt være væsentligt for at opdage disse sammenhænge og for at begynde at tilegne sig det alfabetiske princip. Da denne type oplæsning kan operationaliseres i én type af syntese, men ikke en anden, er det værd at undersøge, om andre kendetegn ved oplæsning, som potentielt retter børnenes opmærksomhed mod det alfabetiske princip, bedre kan operationaliseres i en syntese end i en anden. Den syntese, der kan operationalisere flest kendetegn, vil være at foretrække til oplæsning af børnestavning.

For at komme tættere på, hvilken type syntese der kunne være mest relevant, har jeg formuleret tre formål for oplæsningen, som potentielt skal kunne rette børnenes opmærksomhed mod det alfabetiske princip og dets anvendelse i stavning og læsning. Dernæst har jeg analyseret hvorvidt og hvordan unit-selection-syntesen i programmet IntoWords, som er frit tilgængelig på det danske marked, og en difonsyntesen udviklet til forskningsformål (Henrichsen, 2004) kan operationalisere disse formål. Analysen består af fire trin for hvert af de tre formål for oplæsningen. Først omsættes dette formål til kendetegn ved syntesen for oplæsningen. Disse kendetegn omsættes i trin to til krav til syntesen, fx hvad skal syntesen gøre i tekstanalyse og syntesen af bølgeform. I tredje trin vurderes det, hvordan dette kan eller hvorfor det ikke kan operationaliseres i de to synteser i analysen. Fjerde trin markerer om operationalisering er mulig eller ikke-mulig (se Figur 3.3).

På baggrund af de tre formål for oplæsningen, som i Figur 3.3 er omsat til kendetegn ved oplæsningen, krav til syntesen og operationalisering af disse krav i de to synteser henholdsvis unit-selection-syntesen, IntoWords, og difonsyntesen, ved Henrichsen (2004), er det tydeligt, at en oplæsning af børnestavning, der skal understøtte, at børnenes opdager det alfabetiske princip og dets anvendelse i læsning og stavning, ikke kan operationaliseres i unit-selection-syntesen, men at difon-syntesen på grund af dens mulighed for at justere i ”tekstanalyse” og ”syntese af bølgeform” gør en operationalisering af de ønskede kendetegn ved syntesen mulig.

Grunden til at unit-selection-syntesen ikke kunne operationalisere de kendetegn, som formålene med oplæsningen blev omsat til, er en kombination af tre faktorer: dels denne synteses iboende formål, som er at læse sammenhængende tekst så naturligt som muligt, dels den dybe danske ortografi, og dels at niveauet for tekstanalyse og ”syntese af bølgeform” ikke står til at ændre.

Det væsentlige ved difon-syntesen er, at den kan justere på fire parametre. Den kan justeres på, hvilke fonemer den kobler med hvilke grafemer. Det er muligt at justere, i hvor høj grad den tager hensyn til konteksten. Det er også muligt at justere, hvornår syntesen skal læse (x antal ms efter tasten er sluppet). Sidst er det muligt at justere syntesens oplæsningshastighed.

Til brug for Studie 1, som beskrives nærmere i de flg. afsnit, leverede ph.d. Peter Juel Henrichsen en specialudviklet difonsyntese. Syntesen blev tilpasset på baggrund af denne forfatters input, så den operationaliserede kendetegnene for oplæsning i Figur 3.3.

- Syntesen blev sat til at oplæse uden hensyn til kontekst, så samme grafem blev tildelt samme sproglyd uanset placering i ordet.
- Samtidig blev sproglydene kodet, så konsonantgrafemer oplæses med den hyppigste udtale, når bogstavet står først i et ord, og vokalgrafemer oplæses efter samme princip – dog er udtalen den hyppigste lange vokal, jf. afsnit 3.2.1.1
- På grund af syntesens kvalitet kunne det første bogstav i et ord ikke udtales som en sproglyd, før det stod sammen med mindst et andet bogstav. Derfor endte syntesen med at læse første bogstav i en
stavemåde med bogstavnavnet. Så snart der var to bogstaver i stavemåden, oplæste den ved at danne syntese af de to sproglyde.

- Syntesen blev sat til at læse sproglyden 5 ms, efter at barnet havde sluppet tasten.
- Syntesen læste ikke det sidst tilføjede bogstav, men dannede syntese af hele bogstavstrengen, inklusive det sidst tilføjede bogstav.
- Hastigheden for oplæsning blev sat så langsom som muligt. Grænsen for dette var, at udtalen af sproglydene ved frikative blev for støjfyldt, hvis syntesen blev for langsom.

Den sidste indstilling i syntesen, og som beskrives herunder blev tilføjet for at understøtte, at børnene let kunne identificere, hvis de havde stavet et ord korrekt. Dette blev gjort, fordi jeg vurderede, at det var væsentligt, at børn, der ikke blot stavede et ord fonologisk acceptabelt, men faktisk konventionelt korrekt, blev understøttet i, at denne stavemåde var rigtig. Derfor blev der tilføjet en strategi til oplæsningen (LEX), som gjorde, at syntesen for enhver bogstavstreng gennemsøgte et leksikon, som havde rigtige ord og deres udtale lagret. Hvis syntesen fandt et match mellem bogstavstrengen og en stavemåde i leksikonet, blev grafem-fonem-omkodningen styret af denne forbindelse.

Det samlede resultat af indstillingerne i talesyntesen og den oplæsning, de afstedkommer, kan ses og høres ved at følge linket under Figur 3.4.

Figur 3.4
Skærbillede af difon-syntesen udviklet til Studie 1

Note. Den specialudviklede talesyntese kan høres og ses i brug ved at følge linket https://www.youtube.com/watch?v=QgzUUtUvJ4U

Potentialet i at inddrage oplæsning af børnestavning som en måde at understøtte børnenes tilegnelse af det alfabetiske princip og afsmitningen af det på stavning og andre tidlige skriftsproglige kompetencer udgør en central del af forskningsspørgsmålene, som jeg søger at besvare i det effektstudie, som præsenteres i de følgende afsnit.

3.3 Forskningsspørgsmål. Studie 1

Gennemgangen af resultaterne fra tidligere studier om børnestavning (se afsnit 3.1.3) indikerer, at undervisning, hvor læreren direkte støtter barnet i at forbedre kvaliteten af børnestavning, er en effektiv måde at anvende børnestavning til at udvikle tidlig stavefærdigheden. Evidensen for, at børnenes læsning, opmærksomhed på sproglyde og bogstavkendskab udvikler sig, er mindre entydig, men der er nogen evidens for, at læsning og bogstavkendskab bliver fremmet af en børnestavning med direkte støtte. Evidensen for udvikling af opmærksomhed til sproglyde afgrænsers sig næsten udelukkende til studier, hvor kontrolgruppen ikke arbejder med opmærksomhed på sproglyde. Det er interessant, om den samme tendens kan ses i en dansk kontekst, da der endnu ikke er evidens for effektiviteten af arbejdet med børnestavning med direkte støtte.

Få tidligere studier har undersøgt effekten på tidlige skriftsproglige færdigheder af børnestavning med indirekte støtte, som beskrevet i didaktikken Opdagende skrivning (Korsgaard m.fl., 2010). Af disse finder to studier ingen effekt af børnestavning med indirekte støtte (Levin og Aram, 2013; Rieben, 2005). De to resterende studier finder effekt på stavning, læsning (Clarke, 1988) og også opmærksomhed på sproglyde (Hofslundsengen m.fl., 2016). I disse studier kan effekten af børnestavning med indirekte støtte dog ikke isoleres fra udbyttet fra den sideløbende undervisning i opmærksomhed på sproglyde, lærereffekter eller at børnene også skriver enkeltord med direkte støtte.

Evidens for, at børnestavning som støttes direkte er bedre end børnestavning som støttes indirekte, beror på to studier, som sammen ligner støtteformerne (Levin og Aram, 2013; Rieben, 2005), og finder evidens for en fordel til direkte støtte.

I Studie 1 undersøges effekten af arbejdet med børnestavning i børnehaveklassen. Børnestavningens potentielle for at fremme tidlige skriftsproglige færdigheder er fx af Sénéchal (2017) blevet udpeget til at være før, børnene tillegner sig egentlig læsefærdighed. Det er derfor meningsfuldt at undersøge effekten af børnestavning før dette tidspunkt. Andre fx Chomsky (1971; 1979) har argumenteret for, at børn vil have brug for undervisning i at segmentere ord i fonemer, før de kan børnestave. Det er derfor meningsfuldt at

Første forskningsspørgsmål i Studie 1 er følgende:

1. Fremmer børnestavning med direkte lærerstøtte stavning, læsning, opmærksomhed på sproglyde og bogstavkendskab i højere grad end børnestavning med indirekte lærerstøtte?

Hypotese i Studie 1 i forhold til dette forskningsspørgsmål er baseret på fundene i tidligere studier. På tværs af tidligere studier er der fundet effekt på børnenes stavning af undervisning med fokus på børnestavning (se afsnit 3.1.3.1.1). Særligt studier med direkte støtte i at udvikle kvaliteten af stavning har vist sikker effekt på udviklingen af stavning (se afsnit 3.1.3.1.1). Som en følge af disse fund var det en hypotese i dette studie, at børn, der børnestavede med direkte støtte, ville udvikle deres stavning mere end grupper, der ikke børnestavede. Enkelte studier har også sammenlignet forskellige måder at støtte børnene i at udvikle kvaliteten af deres børnestavning (se afsnit 3.1.3.1.1.1). I disse studier er der en tendens til, at direkte støtte er en mere effektiv måde at fremme kvaliteten af børnenes stavning end indirekte støtte. Derfor var det en hypotese i dette studie, at børnene, som fik direkte lærerstøtte, ville udvikle deres stavning mere end børn, der fik indirekte lærerstøtte. Med udgangspunkt i, at studier ikke entydigt finder effekt på stavning af børnestavning med indirekte støtte (se afsnit 3.1.3.1.1.1.2), er det dette studies hypotese, at børnestavning med direkte lærerstøtte ville udvikle stavning mere end undervisningen i kontrolgruppen.

Hvis bedre børnestavning er årsag til bedre læsning, som fx Sénéchals (2017) teori om udviklingen af tidlige skriftsprolige færdigheder foreslår (se afsnit 2.2.3), så vil bedre børnestavning afspejle sig direkte i bedre læsning. Denne forventning understøttes af, at flere studier, som har fundet effekt på stavning, også har fundet effekt på læsning (se Tabel 3.8). Evidensen er dog ikke en tydelig. I studier, hvor kontrolgruppen også arbejder med sproglyde, er der kun effekt på læsemål, der på den ene eller anden måde er designet til at indfange helt tidlige forskelle i læsning. Forventningen understøttes endvidere af, at der for læsning, som for stavning, er mest evidens for effekt af børnestavning med direkte støtte. Hvis den form for undervisning, der udvikler kvaliteten i børnestavning, også udvikler kvaliteten i læsning, kan det tolkes som udtryk for, at mindre børnestavning er årsag til bedre læsning. Ovenstående resultater kan dog også forklares med, at forbedring i kvaliteten af børnestavning afspejler at børnene har fået mere viden om det alfabetiske princip, som fx Ehris (fx 2005) teori foreslår. Hvis dette er tilfældet, så vil den viden om det alfabetiske princip kunne anvendes i læsning og afspejle sig positivt i læsefærdighed. I dette perspektiv er det viden om det alfabetiske princip, der er årsag til bedre børnestavning og læsning, hvorfor fremgangen i de to færdigheder ikke behøver være en-til-en. Uanset den teoretiske forklaring så er en logisk følge af disse og evidens fra tidligere studier at forvente mere fremgang i læsning hos grupper af børn, der børnestaver med direkte lærerstøtte, i sammenligning med børn, der børnestaver med indirekte lærerstøtte. På den baggrund er hypotesen for læsning som hypotesen for stavning.

For bogstavkendskab er forventningen ligeledes som for stavning. Denne forventning bygger jeg på evidensen fra tidligere studier, som finder, at børnestavning med direkte støtte er bedre end børnestavning med indirekte støtte til at udvikle børnenes bogstavkendskab (se Tabel 3.8).

For opmærksomhed på sproglyde indikerer tidligere studier, at det ikke er typen af støtte, der er væsentlig for, om børnenes opmærksomhed på sproglyde udvikler sig af at børnestave. Det væsentlige er indholdet i undervisningen i kontrolgruppen. I studier, hvor kontrolgruppen træner opmærksomhed på sproglyde,
lærer børnene i kontrolgruppen generelt det samme som børnene, der børnestaver med direkte støtte. Der er dog tale om en tendens, da enkelte studier har modsatrettede resultater. For Studie 1 leder dette til en forventning om, at børnenes opmærksomhed på sproglyd ikke vil adskille sig på baggrund af, om børnene børnestaver med direkte eller indirekte støtte. I sammenligning med kontrolgruppen, som i dette studie får undervisning i opmærksomhed på sproglyde i klassen, forventer jeg heller ikke, at grupperne, som børnestaver, adskiller sig.

For børnene, der får IT-støtte som en måde at udvikle kvaliteten af børnestavning, er det, med udgangspunkt i erfaringer fra pilotprojekter og tidligere studier af it-baseret undervisning, hvor talesynteseoplæsning af børnenes stavning har været en del af undervisningen (se afsnit 3.2), dette studies hypotese, at udbyttet af IT-støtte ikke adskiller sig fra den direkte lærerstøtte. Forventningen er, at begge grupper adskiller sig signifikant fra kontrolgruppen for stavning, læsning og bogstavkendskab men ikke for opmærksomhed på sproglyde. Endvidere adskiller grupperne sig ikke statistisk signifikant fra hinanden på nogen mål.

Et tredje og sidste forskningsspørgsmål i Studie 1 er alene knyttet til børnenes stavning. Talesyntesen er specialdesignet til at rette børnenes opmærksomhed mod sammenhængen mellem udvalgte grafemer og fonemer som en vej til at udvikle børnenes indsigt i det alfabetiske princip og dets anvendelse i læsning (se mere i afsnit 3.2). Det er derfor forventeligt, at den fonologiske kvalitet af børnenes stavning udvikler sig af børnestavning med it-baseret oplæsning som en central del af den støtte, børnene får til at forbedre kvaliteten af deres børnestavning.

Man kan argumentere for, at det er generelt forventeligt, at børnestavning vil udvikle børnenes stavefærdighed ved at forbedre den fonologiske kvalitet af børnenes stavning. Dette argument vil være helt i tråd med fx Sénéchal (2017), der beskriver børnestavning som en central brik i tilegnelsen af det
alfabetiske princip, fordi børnene, når de børnestaver, kan integrere deres opmærksomhed på sproglyde med deres kendskab til bogstaverne og deres navne. I tråd med Ehris (fx 2005) teori, kan man også argumentere for, at netop den fonologiske kvalitet i børnestavningen er central, da den afspejler børnenes viden om det alfabetiske princip.

Resultaterne fra tidligere studier (se afsnit 3.1.3.1.1) indikerer dog, at den støtte, børnene får, når de børnestaver, kan være væsentlig for, om kvaliteten af deres stavning udvikler sig, og om dette kan indfanges med fonologiske eller ortografiske mål.

3. Er effekterne i stavning alene knytter sig til den fonologiske kvalitet af stavningen, eller også til den ortografisk kvalitet? Har typen af støtte betydning for dette?

Da deltagergrupperne er de centrale variable i Studie 1, fremhæves de i resten af kapitlet i de afsnit, hvor de er i fokus, med fed for at understøtte læseforståelsen.

3.3.1 Pilotstudie. Sværhedsgraden af ordene i Studie 1

Et pilotstudie blev gennemført for at kunne udvælge ord til Studie 1s før- og eftertest af stavning og læsning samt til den eksperimentelle undervisning. Pilotstudiets resultater danner grundlaget for udvælgelsen af ordene til Studie 1.

3.3.1.1 Baggrund og formål

Af flere forskere er integrationen af opmærksomhed på sproglyde og viden om bogstavernes navn og lyd og deraf tilegnelsen af det alfabetiske princip blevet udført som grunden til, at børnestavning er knyttet til udviklingen af læsning og stavning (Frost, 2001; Sénéchal, 2017). I forlængelse af dette blev ordene til
studiet udvalgt med det formål at være så nemme som muligt for børnene at opdage og øve det alfabetiske princip i. Samtidig skulle ordene ikke være for lette. Børnene skulle have mulighed for at lære noget.

En række kriterier blev opstillet for ordene i pilotstudiet. Nogle af disse kriterier varierede ordene i pilotstudiet på for at undersøge, hvordan variation i kriteriet påvirkede spredningen i, hvor godt ordene blev stavede. Andre kriterier blev sat til ikke at variere på tværs af ord.

Ordene varierede i længde (1-3 stavelser). Det er muligt, at længde påvirker sværhedsgraden, fordi lange ord stiller større krav til arbejdshukommelsen, eller fordi der simpelthen er flere lyde, der skal identificeres og repræsenteres.

Vokalgrafemet æ i ord, hvor det udtaltes som [ε], blev også valgt som et eksempel på, at sproglyden ikke svarer til vokalgrafemets bogstavnavn, men derimod til bogstavnavnet for vokalgrafemet æ. I modsætning til [ø], som ikke er en standardudtale af y, er [ε] en standardudtale af vokalgrafemet æ.

Ordene med grafemerne p, t, k, y og e repræsenterer i pilotstudiet af ordenes sværhedsgrad de komplekse forbindelser mellem sproglyd og grafem. Dermed kan alle ordene i pilotstudiet skrives fonologisk acceptabelt ved at repræsentere konsonantiske sproglyde med det bogstav, der har sproglyden i ordet som sin standardudtale, og vokaliske sproglyde med det vokalgrafem, der har sproglyden som sit bogstavnavn. Et barn kan fx skrive kys som KØS.

Ord med sproglydshenheder, som der er evidens for kan være svære for børnene at identificere de enkelte sproglyde i, blev sorteret fra. Det gjaldt ord med konsonantklynger (Shankweiler og Lundquist, 1992; Treiman, 1991; 1993) og ord med overensstemmelse mellem bogstavnavn og lyden af ordets første
grafemer, som fx i ord som *ben* og *sen*, fordi børn i udtalt grad bruger bogstavnavnet til at stave de første sproglyde i sådanne ord (Treiman, 1993).

Bogstavernes hyppighed ser ud til at være knyttet til, hvor tidligt børnene begynder at anvende dem i stavningen (Treiman og Broderick, 1998). Derfor udelades ord med meget sjældne konsonantgrafemer fra pilotordene. Ord med grafemerne *c*, *q*, *w*, *x*, *z* indgår derfor ikke (bogstavernes hyppighed på dansk er listet i bilag 8.4). Disse konsonantgrafemers standardudtaler (Elbro, 2014) svarer i øvrigt til standardudtalen for mere hyppige konsonantgrafemer, hvilket også gør forbindelserne mellem fonem og grafem, selvom det er standardudtaler, mere komplekse.

De udvalgte forbindelser mellem grafem og sproglyd repræsenterer således ikke en bred vifte af de komplekse forbindelser mellem sproglyd og grafem, som børn skal tilnærmere sig i dansk ortografi. De repræsenterer alene de komplekse forbindelser mellem fonem og grafem, som stiller krav til børnene om, at de skal kende andet end konsonantgrafemernes standardudtale og andet end sproglyden i vokalgrafemernes bogstavnnavn. Disse forbindelser er altså et afgrænset forsøg på at inddrage mere komplekse forbindelser mellem fonem og grafem, uden at disse bliver for svære, med det formål at undersøge, om børnene gennem deres børnestavning kan tilnærmere sig viden om disse ud over viden om det alfabetiske princip.

3.3.1.2 Ordenes karakteristika

Disse kriterier ledte til, at ord med følgende struktur blev inkluderet (*c*)v(*c*), (*c*)v(*c*)v(*c*), (*c*)v(*c*)v(*c*)v(*c*) med grafemerne *a*, *b*, *e*, *f*, *g*, *h*, *i*, *j*, *k*, *l*, *m*, *n*, *o*, *p*, *q*, *r*, *s*, *t*, *u*, *v*, *y*, *æ*, *ø*, å og med sproglydene [*a æ b d e f g h i j k l m n o p s t u v y ø ɔ*]. En ordbank med ord, som opfyldte ovenstående kriterier, blev fundet via RO’ (kilde: https://roplus.dk/#ordbog/). Ordene blev inddelt i ord med en, to eller tre stavelser og i simple eller komplekse fonem-grafem-forbindelser. Dette resulterede i seks kategorier af ord.

hyppighed under halvtreds blev sorteret fra, med mindre deres betydning var kendt af det 5-årige barn, og ord med en hyppighed på over 50 blev inkluderet, med mindre de ikke var kendt af barnet.

Frekvenskriteriet var dog væsentligere end betydningskriteriet, da børn, som kender ordets stavemåde, formentligt staver ud fra en etableret ortografisk repræsentation (Ehri, 2005), hvilket er i strid med undersøgelsens interesse, mens et barn, der ikke kender betydningen af et ord, fortsat godt ville kunne børnestave ordet, og siden børnene i træning måtte høre ordets udtale gentaget, hvis de havde brug for det, så blev det semantiske kriterie mindre væsentligt end barnets mulige kendskab til ordets stavemåde.

3.3.1.3 Metode
For at undersøge spredningen i, hvor sikkert børnene i børnehaveklasse kunne stave de forskellige typer af ord, blev et pilotstudie gennemført.

3.3.1.3.1 Procedure og deltagere

Ordene blev skrevet i klassen. Eleverne blev instrueret i at skrive ordene så godt, som de kunne. De skulle blot skrive de lyde, de kunne høre, så de kunne ikke skrive forkert. Børnene fik at vide, at det væsentlige var lige præcisa den måde, de hver især skrev ordene på, så de skulle ikke hjælpe hinanden, men bare gøre deres bedste.

at enigheden om indskrivningen er omkring 90 % (fx Ouellette og Sénéchal, 2008), blev denne ekstra indskrivning ikke gennemført i pilotstudiet.

3.3.1.4 Resultat

Hvert ord fik på den måde en score fra hver elev i tre børnehaveklasser. Scoren blev afbildet i kassediagrammer. Herunder vises et kassediagram for et eksemplisk ord fra hver af de seks kategorier af ord i ordbanken med den fonologiske og den ortografiske afstandsscore (se Figur 3.5).

Visuel inspektion af kassediagrammer for den fonologiske afstandsscore for ord af en og to stavelser indikerer, at distributionen af score for disse ord er høreskæv. Det afspejler, at disse ord er blevet staved fonologisk acceptabelt eller næsten fonologisk acceptabelt af mange børn, og spredningen af score derfor er mindre på den andel af score, som ligger under medianen, end for den, der ligger over. For ord med tre stavelser er data mere symmetriske omkring medianen, hvilket tyder på, at spredningen af score på hver side af medianen for disse ord er næsten ens.

For ord med simple og komplekse fonem-grafem-forbindelser er spredningen meget sammenlignelig, når scoringsmetoden er den fonologiske afstandsscore, men for den ortografiske afstandsscore er billedet et andet. For ord med simple fonem-grafem-forbindelser er mønstret for længde det samme for den ortografiske afstandsscore som for den fonologiske afstandsscore, men for ord med komplekse fonem-grafem-forbindelser har medianen en numerisk højere værdi, uanset ordlængde, og for ord med en og to stavelser er spredningen tættere på symmetrisk med den ortografiske score end med den fonologiske afstandsscore.

På den baggrund blev længde og tilstedeværelsen af komplekse fonem-grafem-forbindelserne tolket som faktorer med betydning for spredningen af score for et givet ord.

Figur 3.5
Kassediagrammer for spredningen i stavescore for hver af de seks kategorier i pilotstudiet.

<table>
<thead>
<tr>
<th>Kategorier af ord i pilotstudiet</th>
<th>Simpel FGF</th>
<th>Komplekte FGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S</td>
<td>2S</td>
<td>3S</td>
</tr>
<tr>
<td>1S</td>
<td>2S</td>
<td>3S</td>
</tr>
</tbody>
</table>

Note. Kassediagrammer for spredningen i stavescore for hver af de seks kategorier i pilotstudiet. Eksemplificeret ved ordene nål, rosin, tulipan, bæk, tapet, motorik, FGF=fonem-grafem-forbindelse, S=stavelse, 1,2,3=antal stavelser, FA=fonologisk afstandsscore, OA=ortografisk afstandsscore.

3.3.1.5 Justering af ordmaterialet

Fordi visuel inspektion af kassediagrammer for ord med en og to stavelser viste, at disse ord generelt havde mindre spredning i scorer under medianen end over (se Figur 3.5), besluttede denne afhandlings forfatter
at inkludere ord med initiale klynger som supplement til ord med en eller to stavelser og simple fonem- grafem-forbindelser og til ord med én stavelse og komplekse fonem- grafem-forbindelser. Dette blev gjort ud fra den vurdering, at konsonantklyngen ville gøre ordet sværere at stave (se afsnit 3.3.1.1) og derfor give anledning til mere symmetrisk spredning i, hvordan børnehaveklassebørn staver disse ord. Dette blev gjort for at undgå, at for mange ord i træningsprogrammet kun ville have en tilpas sværhedsgrad for de svageste stavere. Ordene med klynger skulle ellers opfylde samme kriterier som ordene i ordbanken, som de 72 ord i pilotstudiet blev udvalgt fra. Dette betød, at ord af strukturen ccv og ccvcv(c) også blev en del af ordene til effektstudiet.

Til effektstudiet skulle der bruges 54 ord til undervisningen (se afsnit 3.4.4). Til stave- og læsetesten skulle der samlet bruges 30 ord, hvoraf halvdelen skulle være ord fra undervisningen (se afsnit 3.4.3.1.1 og 3.4.3.1.2). Disse i alt 69 ord blev udvalgt fra de 72 ord i pilotstudiet, fra ordbanken blandt ord af lignende sværhedsgrad og blandt de tilføjede ord med initiale konsonantklynger.

3.4 Metode. Studie 1

3.4.1 Deltagerne

Alle ledere fra kommunens fire skoledistrikter blev inviteret til at deltage i studiet med børnehaveklasser fra deres skole. Eneste krav var, at de havde børnehaveklasser med minimum 20 børn. I alt meldte fire forskellige skoler tilbage, at de gerne ville deltage, og disse skoler repræsenterede tre af kommunens fire skoledistrikter. Hver skole deltog med en til to børnehaveklasser. Karaktererne fra folkeskolens afgangsprøver ved slutningen af 9. klasse (15-16 år) var på alle fire skoler lig med eller tæt på, men under landsgennemsnittet (se Tabel 3.2). Deltagerne til dette studie er dermed trukket fra en population med næsten landsgennemsnittets karakteristika.

Tabel 3.2
Gennemsnitskarakter ved folkeskolens afgangsprøve nationalt og lokalt på de deltagende skoler.

<table>
<thead>
<tr>
<th>Fag</th>
<th>Gennemsnit</th>
<th>National</th>
<th>Skole 1</th>
<th>Skole 2</th>
<th>Skole 3</th>
<th>Skole 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dansk (læsning, stavning, skriftlig formulering)</td>
<td>6,9</td>
<td>6,9</td>
<td>6,1</td>
<td>6,8</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>Dansk, matematik, engelsk, naturfag</td>
<td>7,1</td>
<td>6,6</td>
<td>6,3</td>
<td>6,2</td>
<td>6,2</td>
<td></td>
</tr>
</tbody>
</table>

Note. Kilde: uddannelsesstatistik.dk. Gennemsnitskarakter på 7-trinsskalaen (-0,00,02,4,7,10,12) ved folkeskolens afgangsprøve i 9.klasse i 2016.

De 80 børn i studiet er tilfældigt udvalgt blandt 91 deltagere, som blev inkluderet fra den oprindelig gruppe af 109 børn ud fra en række inklusionskriterier. Kriterierne for inklusion i studiet var:

1. Børnene kunne ved førtest ikke læse mere end fire ord fonologisk acceptabelt fra en ordliste på 12 ord (se afsnit 3.4.3.1.2).
2. Børnene scorede ikke under 25 percentilen i klassen på både kvaliteten af børnestavningen og på opmærksomhed på sproglyd.

Disse inklusionskriterier blev dels sat for at ekskludere børn, som i forvejen var sikre i at anvende det alfabetiske princip i læsning, og som derfor med stor sandsynlighed mestrede det, som træningen havde til formål at lære børnene, og dels for at udelukke børn med den laveste opmærksomhed på sproglyd og skriftens lydprincipl. Den sidstnævnte årsag til at ekskludere børnene beroede på, at denne gruppe af børn sandsynligvis endnu ikke havde den tilstrækkelige opmærksomhed på sproglyd til at kunne producere rimelige bud på børnestavning. Denne gruppe af børn har flere forskere (Read og Treiman, 2013; Treiman, 1998) argumenteret for har brug for mere træning i opmærksomhed på sproglyde, førend de kan drage nytte af at børnestave. Dette er i sig selv interessant at afdække, men denne gruppe af elever sorteres altså fra i denne undersøgelse, så gruppen af elever, som deltager i træningen, alle har en vis opmærksomhed på sproglyd.
De tilbageværende 91 børn inkluderede altså ikke ekstreme tilfælde i klassen. De 91 børn blev sorteret i tre niveauer: høj, mellem og lav førtestscore. Høj førtestscore var kendegnet ved enten at være læsere eller ved at score over 75 percentil for klassen på børnestavning. Lav førtestscore var børn med en score under 25 percentilen i klassen på mere end to af målene: kvaliteten af børnestavning, læsning, opmærksomhed på sproglyd, fonem-grafem-viden eller bogstavkendskab. Det midterste niveau var de resterende børn. Det påfældet blev lavet for at understøtte, at den tilfældige fordeling af børn i hver klasse til hver gruppe blev gjort på en måde, så børn med forskellige færdighedsniveauer blev fordelt jævnt på alle grupper i hver klasse. Det blev gjort ved at fordele børn fra hvert niveau i hver klasse separat, men tilfældigt til de fire grupper i studiet: kontrolgruppen, indirekte lærerstøtte, IT-støtte, direkte lærerstøtte. Der var to begrænsninger for den tilfældige fordeling: 1) For at minimere lærer/klasseværelseseffekten skulle fire børn fra hvert klasselokale deltage i hver af studiets fire grupper. 2) Der måtte ikke være statistisk signifikante forskelle mellem grupperne ved førtest på børnestavning, læsning, opmærksomhed på sproglyde, bogstavlydkendskab og ordforråd. Denne sidste begrænsning blev lavet for at tilfældige fordeling blev gentaget, indtil der ikke var forskel mellem grupperne. Tabel 3.3 viser det endelige antal deltagergrupper i hver gruppe, deres gennemsnitsalter og fordelingen af drenge/piger i grupperne. Som det fremgår af Tabel 3.3 var antallet af deltagergrupper i gruppen og deres alder meget sammenligneligt, men fordelen af drenge/piger er ikke ens i de fire grupper. Denne variabel er der i designet af studiet ikke kontrolleret for.

Tabel 3.3
Karakteristika hos børnene i de fire deltagergrupper i Studie 1.

<table>
<thead>
<tr>
<th>Karakteristikum</th>
<th>Kontrol</th>
<th>Indirekte lærerstøtte</th>
<th>IT-støtte</th>
<th>Direkte lærerstøtte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal deltagere</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Alder i år M (SD)</td>
<td>6.70 (0.31)</td>
<td>6.52 (0.35)</td>
<td>6.58 (0.30)</td>
<td>6.58 (0.23)</td>
</tr>
<tr>
<td>Køn(^a)</td>
<td>11/9</td>
<td>11/9</td>
<td>14/6</td>
<td>9/11</td>
</tr>
</tbody>
</table>

Note. Antal deltagere, gennemsnitsalter i år, M=gennemsnit, SD=standardafvigelsen, fordeling på køn ved studiets start i de fire deltagergrupper: kontrol, indirekte-lærerstøtte, IT-støtte, direkte lærerstøtte.

\(^{a}\)Først antal drenge, dernæst antal piger

3.4.2 Procedure
Børnene blev førtestet efter jul i børnehaveklassen januar-februar (2017), eftertestet i marts-april (2017) og igen i 1. klasse (april, 2018). Alle test, på nær læsning i børnehaveklassen, blev gennemført i små grupper med seks-syv deltagere (for stavning i børnehaveklassen 4-5 deltagere). Børnens lærer stod for fordelingen af børn i grupper. Kriteriet for gruppendannelse var en sammensætning af elever, som ville give størst mulig arbejdsro. Børnene var derfor ikke nødvendigvis i den samme gruppe ved førtesten og de efterfølgende eftertest. Det er derfor muligt, at forskellige gruppendynamikker har påvirket det enkelte barns score forskelligt ved førtesten og de efterfølgende eftertest. En faktor, som kunne have været fjernet ved at teste børnene i samme gruppe på begge testtidspunkter. Alligevel blev denne fordeling af grupper valgt, da grupper med en lav grad af forstyrrelse blev vurderet som væsentligere for testresultaternes gyldighed end ens gruppe. Det blev vurderet, at lærerens sammensætning ville give anledning til mindre forstyrrelse og dermed bedre mulighed for, at børnene kunne koncentrere sig om testningen og ikke fik en dårlig score, fx fordi gruppen var sammensat med børn, som ville forstyrre meget, hvis de var sammen.

Testningen foregik i et nærliggende lokale og blev i børnehaveklassen styret af afhandlingens forfatter og ved efterstenen i 1. klasse af en forskningsassistent, som havde stor testerfaring og meget viden om læsning.
og læseudviklingen. Hvis dette har påvirket resultatet, så er alle børn blevet ramt af den samme effekt, og en eventuel påvirkning kan dermed forventes at være ens for alle og ikke påvirke nogle grupper mere end andre.

Børnernes mulighed for at kigge efter blev mindsket ved at sætte børnene så langt fra hinanden, som lokalet tillod, og ved at opsætte foldede kartonark som skillevæg mellem børnene. Samtidig fortalte testtager børnene, at det væsentlige for hende var lige præcis deres bedste bud på et svar og ikke et “rigtigt” svar. Dette blev gjort for at hjælpe børnene til at tro på, at deres eget svar var godt nok, fremfor at lede efter et “rigtigt” svar ved at kigge efter hos en kammerat.

For de standardiserede test fulgte testtageren fremgangsmåden fra testens officielle vejledning (se afsnit 3.4.3). For de test, som blev udviklet til dette studie, blev der lavet en vejledning, som testtageren fulgte. Vejledningen til test udviklet til dette studie kan findes i bilag 8.5.

Testningen i børnehaveklassen blev delt over tre testsessioner og gennemført i samme rækkefølge for alle børn. Hver af de tre testsessioner varede 30 minutter. I tillæg til disse tre testsessioner blev børnenes læsning testet individuelt. Oplæsningen var ikke på tid, men kunne gennemføres med en hel klasse på en lektion (45 min.). I 1. klasse blev testningen delt over to testsessioner og gennemført i samme rækkefølge for alle elever. I testsession varede omkring 30 minutter. Rækkefølgen på testene i børnehaveklassen og 1. klasse var sammensat med det formål at undgå for mange svære test i samme testsession. For fuldt overblik over rækkefølge i testningen se bilag 0.

3.4.3 Testbatteri

Dette afsnit beskriver de test, som er brugt for at besvare forskningsspørgsmålene i dette Studie 1 før undervisningen i børnehaveklassen (førtest), efter undervisningen i børnehaveklassen (eftertest) og et år efter undervisningen (opfølgende test).

3.4.3.1 Mål børnehaveklassen (før- og eftertest)

3.4.3.1.1 Stavning

Syv af ordene (markeret med fed) i førtesten og yderligere tre (markeret med fed) i eftertesten havde en stavemåde, der gjorde, at børnene kunne stave ordet korrekt, hvis de forbandt ordets fonemer med bogstavernes standardudtale, hvis der var tale om et konsonantbogstav, eller med lyden fra bogstavnavnet, hvis der var tale om et vokalbogstav. Bogstavernes standardudtale er fundet i Elbros (2014, s. 83-85) oversigt over bogstavernes standardudtaler og mest almindelige betingede udtaler.

Tre af ordene (ikke fed) i førtesten og yderligere fem i eftertesten havde en stavemåde, der gjorde, at børnene kunne stave dem fonologisk acceptabelt ved at koble fonemerne med det bogstav, der har fonemet som sin standardudtale, fx SÆG for sæk. To af disse ord i førtesten og tre yderligere i eftertesten kunne kun staves korrekt ved at knytte et fonem til en betinget udtale for et bogstav, fx skulle konsonantbogstavet k knyttes til fonemet [g] for at stave [seg] som SÆK og ikke SÆG. Det krævede, at barnet valgte den betingede udtale af k over standardudtalen af bogstavet g. De sidste to ord i førtesten og ét i eftertesten kunne kun staves korrekt, hvis barnet knytter fonemet til en standardudtale, som ikke
stemmer overens med bogstavnavnet, fx skal barnet for at skrive vokalen i [fėm] som FEM i stedet for FÆM vælge en standardudtale for bogstavet e, som ikke matcher med bogstavnavnets lyd.

To af ordene i førtesten og yderligere to i eftertesten havde initiale konsonantklynger bestående af to på hinanden følgende konsonanter. De resterende ord bestod af stavelser med cv- eller cvc-struktur. Den sidstnævnte struktur optrådte kun i enstavelsesord eller som den finale stavelse i to- og trestavelsesord. Ordlængden varierede fra en- til trestavelsesord.

Ordene blev præsenteret i en fast, men tilfældig rækkefølge. Ordene i stavetesten er dermed ikke ordnet efter sværhedsgrad eller andre kriterier end tilfældig sortering. Denne sortering blev valgt for at sikre, at børnene i alle fire grupper ville være påvirket ensartet af rækkefølgen på ordene i stavetesten. Ordene i før- og eftertesten var ikke organiseret i samme rækkefølge.

Børnene lavede deres besvarelser på et arbejdsark (se bilag 8.6.1 og 8.6.2). På arkets venstre side kunne barnet se et billede af målordet. Billedet skulle hjælpe barnet med at orientere sig på arket og hjælpe børnene til at fastholde hukommelsen for målordets udtale. Ud for hvert billede var der en boks, som barnet skulle skrive målordet i. Børnene skrev med blyant og blev bedt om at krydse ud, hvis de ville ændre et bogstav. Børnene hørte målordet fem gange. Først i en sætning (se sætningerne i bilag 8.5.1), dernæst i normalt taletempo, så to gange i nedsat taletempo og sidst én gang i normalt taletempo. Herefter skulle børnene skrive ordet, så godt som de kunne (se den fulde vejledning i bilag 8.5.1).

Børnenes stavemåder blev digitaliseret. En forskningsassistent og jeg digitaliserede børnenes besvarelser ved at indskrive dem i Excel. Det primære kriterium for indskrivning af stavemåderne fra børnenes arbejdsark var, at man ved tvivl indskrev bogstavet til fordel for barnet. Det betød i praksis:

- Et bogstav, der kan genkendes som flere forskellige bogstaver, hvoraf den ene matcher målordet, indskrives som det bogstav, der er i målordet. Dette gælder ved overstregninger, sjuskede bogstaver, ikke-sammenhængende bogstavrækkefølge (linjeskift eller store mellemrum), forkert svarboks, forkert bogstavretning godkendes.
- Barnets tidligere skrivning af bogstavet tages med i fortolkningen af et bogstav, som der er usikkerhed omkring.
- Hvis indskriver har været i tvivl om fortolkningen jf. punkt 1 og 2, er der sparet med den anden indskriver om fortolkningen før indskrivning.

Hver gang, der var tvivl om indskrivningen, konsulterede de to, som indskrev stavemåderne, med hinanden. På denne måde blev enighed om indskrivning kontrolleret ved tvivlstilfælde. På den måde var der 100% enighed om meget tolkningskrævende tilfælde. For de resterende tilfælde var vurderingen, at indskrivningen var ligetil. Denne hypotese blev dog efterprøvet ved, at 25 % af testene blev indskrevet af både forskningsassistenten og denne forfatter. Enigheden om indskrivningen var i denne stikprøve høj, 98,9 %, og understøttede hypotesen om, at i tilfælde, hvor den, der skrev staveprøverne ind, ikke var i tvivl, der var enighed meget høj.

Efterfølgende blev børnenes stavning scoret på to måder.

1. Delvis ved at bruge Pontosoftwaren (Kessler, 2009) til at tildele hver stavemåde en score, der afspejler afstanden mellem barnets stavemåde og fonologisk acceptable stavemåder. Denne score kaldes i det følgende “fonologisk afstandsscore”.

56
2. Pontosoftwaren blev også brugt til at tildele hver stavemåde en score, der afspæjer afstanden mellem barnets stavemåde og korrekt stavning. Denne score kaldes i det følgende “ortografisk afstandsscore”.

På baggrund af dette scorer studiet både børnenes stavning med en fonologisk og en ortografisk afstandsscore. På den måde er der mulighed for at belyse, hvordan børnenes stavning udvikler sig både med hensyn til deres anvendelse af det alfabetiske princip i stavning, som måles med det fonologiske afstandsmål, men også med hensyn til korrekt stavning, som måles med det ortografiske afstandsmål.

Figur 3.6
Skærbillede af Pontossoftwarens startside.

Note. Kilde: http://spell.psychology.wustl.edu/ponto/
Forskellen mellem de to mål er som før nævnt hvilket målord, børnemønstret sammenlignes med. Samtidig er den scoringsnøgle, der ligger til grund for sammenligningen, også forskellig. Dette forklares bedst med udgangspunkt i et skærmbillede af Pontosoftwarens startside (se Figur 3.6).

Startsiden (se Figur 3.6) er opdelt i:

1. Trials, hvor inputtet er tredelt: subject (deltager), stimulus (målord), response (børnestavning).
2. Correspondences, hvor inputtet igen er tredelt: stimulus (målbogstav/lyd), response (udvalgt stavemåde), penalty (point).
3. Færdiglavede korrespondancer.
4. Standardpoint for at indsætte, slette og ændre
5. Scoring – indstiller for, om bogstaverne i børnestavning skal stå i samme rækkefølge, som bogstaverne i målordet.

Ved den ortografiske afstandsscore ser indstillerne ud som i eksemplet i Tabel 3.7.

Figur 3.7
Pontoindstilling ved ortografisk afstandsscore

<table>
<thead>
<tr>
<th>1) trials:</th>
<th>stimulus</th>
<th>response</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject</td>
<td>søk</td>
<td>5g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2) correspondences:</th>
<th>stimulus</th>
<th>response</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Søk</td>
<td>response</td>
<td>Penalty</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3) færdiglavede korrespondancer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4) point:</th>
<th>deletion</th>
<th>Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5) scoring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja til: korrekt søkvens i børnestavning i forhold til målordets stavemåde</td>
</tr>
</tbody>
</table>

Den færdiglavede korrespondance “Identity” tildeler ved ens tegn i stimulus- og respons-kolommen nul point. Derfor kunne denne score bruges direkte og sammenligneligt med Treiman m.fl. (2016) til at score i en dansk ortografi, dog med den undtagelse, at bogstavet å af Ponto blev tolket som to separate karakterer, og derfor blev alle å’er i børnenes stavemåder og i målordene skrevet med symbolet ɔ, som er IPA-symbolet for lyden af grafemmet å. Da ingen af målordene indeholdt et å i deres korrekte stavemåde, så var udskiftningen kun nødvendig i børnenes stavemåder.

For deltager 1 leder indstillingen i Figur 3.7 for ordet søk til en score på 2,4 point. Denne score kommer Ponto frem til, fordi softwaren, for at omdanne barnets staveforsøg til korrekt stavning, skal tilføje et bogstav, hvilket lægger et point til scoren, og udbytte et andet, hvilket lægger 1,4 point til scoren (se Figur 3.8).

Figur 3.8
Eksempl på ortografisk afstandsscore.

<table>
<thead>
<tr>
<th>subject</th>
<th>stimulus</th>
<th>response</th>
<th>distance</th>
<th>Align</th>
</tr>
</thead>
<tbody>
<tr>
<td>deltager1</td>
<td>søk</td>
<td>5g</td>
<td>2,400</td>
<td>[s=5][æ=][k=g]</td>
</tr>
</tbody>
</table>

Note. Ortografisk afstandsscore for deltager 1's børnestavning af ordet søk. Scoringen er lavet på baggrund af indstillerne i Figur 3.7.
På samme måde blev resten af ordene i stavetesten scoret for hvert barn. Barnets endelige score er summen af hvert ords score og kan variere fra 0 point, som den bedste score, og med højere score lavere kvalitet i barnets staveforsøg.

Ved den fonologiske afstandsscore er princippet det samme som for den ortografiske afstandsscore, men indstillingerne i Pontosoftwaren er lidt anderledes, og indholdet i feltet “correspondence” skifter fra ord til ord. Korrespondancerne for de enkelte ord består i specifikke korrespondancer, som skal tillade, at børnene kan lave fonologisk acceptable stavemåder, som ikke svarer til ordets korrekte stavemåde, uden at Ponto kategoriserer disse bogstaver som nogle, der kræver en ændring og dermed giver point.

Korrespondancer for hvert ord er bestemt på baggrund af oplysninger om sammenhængen mellem sproglyde og grafemer i dansk og disse sammenhænges hyppighed (kilde: https://bogstavlyd.ku.dk/forside/). Ikke alle mulige sammenhænge mellem et ords sproglyde og mulige grafemer, der kunne repræsentere disse, blev en del af korrespondancen for det enkelte ord. Inklusionskriteriet var, at sammenhænge mellem sproglyd og grafem skulle optræde i lignende positioner i andre ord end målordet, så fx blev en mulig stavemåde for initiale s-lyde som i sæk, da forbindelsen mellem [s] og grafemet z optræder i andre danske ord, fx zebra, mens grafemerne g og k begge var en mulig stavemåde for [g] i slutningen af ord, fx i sæk og hag. For sproglyden [e] er både e, æ og i mulige måder at repræsentere sproglyden på i dansk skriftsprog, men da i næsten kun lyder som [e] efter r, som fx i brik, en lydfølge, som ikke indgår i målordene, så er det e og æ, der inkluderes i denne sammenhæng. Resultatet er, at børnestavninger, der repræsenterer sproglyde i målordet med bogstaver, som kan repræsentere denne sproglyd i andre ord i en sammenlignelig position og bogstavkontekst, kategoriseres som fonologisk acceptable, og Ponto ændrer dem dermed ikke. Et samlet overblik over de specifikke korrespondancer for hvert ord kan findes som bilag til denne afhandling (se bilag 8.7). Indstillingen for ordet sæk for deltager 1 er illustreret i Figur 3.9 herunder.

Figur 3.9
Pontoindstilling ved fonologisk afstandsscore.

<table>
<thead>
<tr>
<th>1) trials: Subject deltagere1</th>
<th>stimulus sæg</th>
<th>response s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) correspondences: stimulus E e</td>
<td>response e</td>
<td>penalty 0</td>
</tr>
<tr>
<td>E æ</td>
<td>æ</td>
<td>0</td>
</tr>
<tr>
<td>G k</td>
<td>k</td>
<td>0</td>
</tr>
<tr>
<td>S c</td>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>Z z</td>
<td>z</td>
<td>0</td>
</tr>
<tr>
<td>3) færdiglavede korrespondancer: Identity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) point: insertion deletion 1</td>
<td>substitution 1,4</td>
<td></td>
</tr>
<tr>
<td>5) scoring: ja til korrekt sekvens i børnetavning i forhold til målordets stavemåde</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Som ved den ortografiske score anvendes den færdiglavede korrespondance ”Identity” til at score samme tegn i response- og stimuluskolonnen med nul point, og alle å’er i børnenes stavemåder omkodes til Æ.

Derudover har hvert ord en række specifikke korrespondancer. Figur 3.9 viser, hvordan disse er kodet for ordet sæk. For dette ord og med disse korrespondancer må barnet repræsentere [e] i sæk med både e og æ.
æ, uden at ponto laver en ændring. Barnet må repræsentere [g] med både g (Identity) og k, uden at ponto laver en ændring, og barnet må repræsentere det initiale [s] i sæk med både s (Identity), c og z.

For deltager 1 leder indstillingen i Figur 3.9 for ordet sæk til en score på et point. Denne score kommer Ponto frem til, fordi softwaren, for at omdanne barnets staveforsøg til en fonologisk acceptabel stavemåde, skal tilføje et bogstav, hvilket lægger et point til scoren (se Figur 3.10).

Figur 3.10
Eksempel på fonologisk afstandsscore.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Stimulus</th>
<th>Response</th>
<th>Distance</th>
<th>Align</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltager 1</td>
<td>seg</td>
<td>sg</td>
<td>1.000</td>
<td>[s=-][c=*][g=-]</td>
</tr>
</tbody>
</table>

Note. Fonologisk afstandsscore for deltager 1's børnestavning af ordet sæk. Scoringen er lavet på baggrund af indstillinger i Figur 3.9.

Som det var tilfældet for den ortografiske afstandsscore, så blev resten af ordene i stavetesten scoret efter samme princip for hvert barn for hvert ord med dette ords specifikke korrespondancer. Barnets endelige score er summen af hvert ords score og kan variere fra nul point som den bedste score og med højere score lavere kvalitet i barnets staveforsøg.

Med både en fonologisk og ortografisk afstandsscore er det muligt at få indblik i børnenes udnyttelse af det alfabetiske princip i stavning, men også deres læring målt på en skala, som er følsom over for forskelle mellem børnene i deres anvendelse af mere komplekse principper i skriften som skriftens lydprincip for bogstavfølger eller forbindelser mellem vokalfonemer og grafemer, som ikke er i overensstemmelse med vokalgrafemets bogstavnavn.

Udover at ordene i testen er ord, som på grund af variation i længde, stavelseskompleksitet og stavemåde har forskellig sværhedsgrad, så er ordene i stavetesten også udvalgt, så halvdelen af dem indgår som træningsord i undervisningen, og halvdelen af dem er ord med samme struktur, som ikke indgår i undervisningen. Ordparrene er præsenteret i Figur 3.11.

Figur 3.11
Ordpar i stavetesten.

<table>
<thead>
<tr>
<th>Trænet:</th>
<th>bas</th>
<th>komel</th>
<th>fem</th>
<th>kæp</th>
<th>musik</th>
<th>sten</th>
<th>fly</th>
<th>roligen</th>
<th>vitamin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utrænet:</td>
<td>lus</td>
<td>kinin</td>
<td>sæk</td>
<td>let</td>
<td>panik</td>
<td>ske</td>
<td>glass</td>
<td>megafon</td>
<td>feminin</td>
</tr>
</tbody>
</table>

Note. Ordpar i stavetesten. Øverste række er ord, som indgik i forsøgsundervisningen. Nederste række er ord, som ikke indgik i forsøgsundervisningen, men som er sammenlignelige.

Opgavehomogeniteten for stavetesten opgjort med den fonologiske afstandsscore var fremragende med en Cronbachs alpha på 0,94, og for den ortografiske afstandsscore var den også fremragende med en Cronbachs alpha på 0,92.

3.4.3.1.2 Læsning

Børnene blev opmuntret til at læse tolv ord, så godt som de kunne. Hvis de ikke kunne læse ordene, skulle de blot prøve at sætte lyde på bogstaverne eller benævne bogstavernes navne. Denne instruktion fik børnene for at opmuntre dem til at forsøge at læse eller vise deres kendskab til forbindelserne mellem

Læsetesten var individuel. BørneneSad daen for klassen, hvor de blev præsenteret for ordene et ad gangen. Ordene var printet på separate kort, skrevet med sort på hvid med font Cambria 80. Ordene var skrevet med små bogstaver, så de ligner det, børnene møder i deres læsebøger (se bilag 8.6.3).

Til læseprøven var der to øveord. Disse blev præsenteret et efter et for børnene, før børnene gik i gang med de rigtige testord. Ved første øveord modellerede testeren, hvordan børnene skulle læse, ved at give et bogstav ad gangen sin standardlyd og så danske syntese af disse lyde. Tasteren modellerede meget langsømt og tydeligt. Ved andet øveord blev børnene opmuntret til at prøve at læse ordene, sætte lyde på bogstaverne eller benævne bogstavnavnene. Hvis børnene gik i staa, modellerede testeren igen.

Efter gennemgang af de to øveord blev børnene bedt om at prøve at læse de tolv testord e et efter et. Hvis de ikke kunne læse ordet, skulle de prøve at sætte lyd på bogstaverne. Hvis de ikke kunne dette, så skulle de nævne navnet på de bogstaver, de kendte (for den fulde vejledning se bilag 8.5.2). Børnens oplæsning blev optaget som lyd, så testeren efterfølgende kunne opgøre scoren. Hvis børnene ikke kunne komme med et fonologisk acceptabelt bud på, hvad der stod på kortet for fire på hinanden følgende ord, så blev testen afsluttet. Testen var ikke på tid.

For at score børnens læsning blev deres læsefølge transskribet og indskrevet i Excel med lydskrift, der svarer til den, som anvendes i Den Danske Ordbog (https://ordnet.dk/ddo/) (se kapitel 1). Dog var transskriptionen endnu grovere på den måde, at den brugte disse sprogelydssymboler, men ikke angav tryk, stød og længde. Dette blev valgt fra, fordi den enkelte transskription var nok til at score oplæsningen. Det
blev dog markeret, hvis barnet læste ordet med korrekt tryk, stød og vokallængde, ved at ordet blev skrevet med tryk og stød. På den måde kunne korrekt oplæste ord skelnes fra ord, som blev oplæst på en fonologisk acceptabel måde eller med korrekte sproglyde med forkert længde, stød og/eller tryk. Som det var tilfældet med stavetesten, var det overordnede princip for transskriptionen også her, at i tvivlstilfælde blev den udført, så den var til fordel for barnet. Dette betød i praksis:

- Børnenes oplæsning af vokalgrafemer blev vurderet som en bogstavlyd og ikke et navn, blot barnet trak udtalen af vokalnavnet. Konsonantgrafemer blev vurderet som bogstavlyd, hvis barnet udtalte grafemet uden andre sproglyde, som fx de vokallyde, der er en del af bogstavnavnet.
- Børn, som dannede syntese af sproglyde, selv hvis lydene blev trukket meget langt, fik en score svarende til sproglyden.

Transskriptionen blev foretaget to gange med en måneds mellemerum af denne afhandlings forfatter. Ved anden transskription var jeg blændet for første transskription. Enigheden mellem første og anden transskription var 97,01%. Ved tvivlstilfælde blev barnets oplæsning genlyttet og den transskription, der var tættest på det, jeg hørte ved 3. lytning, blev valgt.

Efterfølgende blev børnenes læsning scoret med Pontosoftwaren (Kessler, 2009), og hver oplæsning fik en fonologisk afstandsscore, der afspejler afstanden mellem barnets oplæsning og en fonologisk acceptabel oplæsning af målordet. Pontosoftwaren (Kessler, 2009) er blevet brugt i mange studier til at lave en fonologisk afstandsscore for stavning (fx Treiman m.fl., 2016), men er, denne forfatter bekendt, ikke før blevet brugt til at lave en lignende score for læsning. Da det er af særlig interesse for denne afhandling at undersøge udviklingen af læsning hos en gruppe af børn, som kun kan læse få eller ingen ord, er det interessant at måle forskelle mellem børnene i en færdighed, før der er egentlig etableret. Dette har afstandsscore for stavning blandt børnehaveklassebørn netop vist sig at kunne ved at være tæt knyttet til senere stavning (Treiman m.fl., 2019).

For at kunne lave en fonologisk afstandsscore er det nødvendigt at afgræde, hvilke oplæsninger af de enkelte ord, der er fonologisk acceptable. Et ord blev bestemt til at have en fonologisk acceptabel oplæsning, hvis hvert grafem i ordet blev oplæst med en plausibel sproglyd. Plausible sammenhænge mellem grafemer og fonemer blev bestemt på baggrund af oplysninger om disse sammenhænge på hjemmesiden https://bogstavlyd.ku.dk/forside/. Her kan hyppigheden af grafem-fonem-forbindelser slås op. Plausible

Figur 3.12

Fonologisk acceptable oplæsninger

<table>
<thead>
<tr>
<th>ord</th>
<th>standardudtale*</th>
<th>fonologisk acceptable sproglyde^</th>
</tr>
</thead>
<tbody>
<tr>
<td>mål</td>
<td>[ˈmaɬ]</td>
<td>[m][o][l]</td>
</tr>
<tr>
<td>mel</td>
<td>[ˈmeɬ]</td>
<td>[m][e][l]</td>
</tr>
<tr>
<td>vin</td>
<td>[ˈviŋ]</td>
<td>[v][i][ŋ]</td>
</tr>
<tr>
<td>pil</td>
<td>[ˈplil] [pel]</td>
<td>[p][i][l][e][l]</td>
</tr>
<tr>
<td>rosin</td>
<td>[rəʊˈstɪn]</td>
<td>[r][o][ʊ][s][i][n]</td>
</tr>
<tr>
<td>vokal</td>
<td>[voˈkæl]</td>
<td>[v][o][k][a][l]</td>
</tr>
<tr>
<td>pris</td>
<td>[ˈpsɪs]</td>
<td>[p][i][s][i][s]</td>
</tr>
<tr>
<td>plus</td>
<td>[ˈplʌs]</td>
<td>[p][l][u][s][i]</td>
</tr>
<tr>
<td>tørtum</td>
<td>[ˈtʊrtʊm]</td>
<td>[t][ʊ][r][t][ʊ][m]</td>
</tr>
<tr>
<td>motel</td>
<td>[ˈmoʊtɛl]</td>
<td>[m][o][t][ɛ][l]</td>
</tr>
<tr>
<td>domino</td>
<td>[ˈdoʊmɪnɔ]</td>
<td>[d][o][m][i][n][o]</td>
</tr>
<tr>
<td>tulipan</td>
<td>[ˈtʊliˌpæn]</td>
<td>[t][ʊ][l][i][p][æ][n]</td>
</tr>
</tbody>
</table>

*Kilde: https://ordnet.dk/ddo/
^Fonologisk acceptable udtaler af bogstavet fundet på https://bogstavlyd.ku.dk/forside/. Der skelnes ikke mellem variationer af sproglyde med hensyn til længde og stød.
forbindelser er dem, som optræder i sammenlignelige positioner i andre ord, som optræder med mere end 10% hyppighed og ikke kun i særlige bogstavsammenhænge. Der tages ikke hensyn til variationer i længde og stød. Dette skyldes, at interessen i denne scoringsmetode er børnenes anvendelse af det alfabetiske princip i læsning, og ikke om børnene når frem til korrekt oplæsning af fx mål. Derfor er det for den fonologisk plausible læsning i denne afhandling ikke væsentligt, om børnene når frem til fx [ɔl] [ɔ:l] eller [mɔl]. Plausible sproglyde i de 12 ord i læsetesten kan ses herunder (se Figur 3.12).

For at den fonologiske afstandsscore kan skelne mellem børn, der blot sagde bogstavnavne, børn, der forsøgte sig med sproglyde, og børn, der dannede syntese, skulle feltet ”correspondence” udfyldes for hvert ord (se Figur 3.6). Korrespondancen havde for hver af målordets sproglyde tre niveauer af score:

2. Korrekt/ikke korrekt sproglyd i isolation.
3. Fonologisk acceptable/ikke acceptabel sproglyd i syntese.

Figur 3.13
Fonologisk afstandsscore eksemplificeret ved ordet mål.

1) trials:	stimulus	Response
subject	mål	mål
deltaget		

2) correspondences:	stimulus	response	Penalty
deltaget	mål	2	
alle andre bogstavnavne	M	1	
alle andre sproglyde	[m]	0	
alle andre ikke fonologisk acceptable sproglyde i syntese	@	2	
alle andre bogstavnavne	@	1	
alle andre sproglyde	@	0	
alle andre ikke fonologisk acceptable sproglyde i syntese			

| 3) færdiglavede korrespondancer: | Identity |
| | |

4) point:	deletion	substitution
	2	2

| 5) scoring: | ja til: korrekt sproglyd i børnemønster i forhold til målordets stavemåde |
| | |

Note. Fonologisk afstandsscore. Indstillinger i Pontosoftwaren for ordet mål. Korrespondancer er vist for accepterede bogstavnavne, sproglyde og sproglyde, som barnet bruger i syntese. I den rigtige korrespondance er også alle bogstavnavne, sproglyde og ikke fonologisk acceptable sproglyde i syntese indskrevet (se bilag 8.8.1 for fuld korrespondance).

Første niveau gav tre point for forkert og to point for korrekt. Andet niveau gav barnet ét point ved korrekt sproglyd og to point ved forkert sproglyd. På tredje niveau fik fonologisk acceptabel sproglyd i syntese nul
point og fonologisk ikke-acceptabel sproglyd i syntese fik ét point. Ponto blev indstillet, så tilføjelse, fjernelse og ombytning ledte til to point. Pontoindstillingerne er eksempliceret for ordet mål.

Kun et udsnit af korrespondancerne på hvert niveau er med, da alle bogstavnavne, isolerede sproglyde og sproglyde i syntese, som ikke er korrekte eller fonologisk acceptable, ikke er med i eksemplet (se Figur 3.12). Et fuldt eksempel på korrespondancer for sproglyden [l] i ordet mål kan findes i bilagene til denne afhandling (se afsnit 8.8.1).

Som ved den fonologiske og ortografiske afstandsscore for stavning anvendes den færdiglavede korrespondance ”Identity” til at score samme tegn i response- og stimuluskolonnen med nul point. Derudover har hver sproglyd korrespondancer på tre niveauer, som er acceptable og ikke acceptable. Figur 3.13 viser, hvordan disse er kodet for ordet mål. For dette ord og med disse korrespondancer må barnet læse grafemet å i mål med [ɔ] og [l], uden at Ponto laver en ændring og tildeler point. Mens grafemerne m og l skal oplæsnes som disse lyde, hvis Ponto ikke skal lave en ændring og tildele point.

Hvis barnet ikke danner syntese, men blot siger sproglyden i isolation, tildeles ét point, hvis barnet korrekt siger [m] [ɔ] [l]. Ved alle andre sproglyde tildeles barnet to point. Hvis barnet siger det korrekte bogstavnavn, gives to point, mens alle andre bogstavnnavne giver tre point. Hvis barnet udelader en lyd, markeres det med &, og barnet får tre point.

For deltager 1 leder indstillingen i Figur 3.13 for ordet mål til en score på ét point. Denne score kommer Ponto frem til, fordi softwaren, for at omdanne barnets oplæsningsforsøg til en fonologisk acceptabel oplæsning, skal ændre [n] til [m], hvilket Ponto ikke laver, og derefter tildele point.

Hvis et barn i stedet for at læse [nɔl] havde læst [ɔl] og dermed udeladt det første grafem, ville scoren med indstillingen i Figur 3.13 blive tre point (se Figur 3.15). Da grafemer, der ikke læses af barnet, tildeles tre point.

Fonologisk afstandsscore ved oplæsning [nɔl] for mål

<table>
<thead>
<tr>
<th>subject</th>
<th>stimulus</th>
<th>Response</th>
<th>distance</th>
<th>align</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltager 1</td>
<td>mål</td>
<td>mål</td>
<td>1.000</td>
<td>[m=n*[l=ɔ]?[l=ɛ]]</td>
</tr>
</tbody>
</table>

Note. Fonologisk afstandsscore for deltager 1’s oplæsningsforsøg af ordet mål. Scoringen er lavet på baggrund af indstillingen i Figur 3.13.

Opgavehomogeniteten for læsetesten opgjort med den fonologiske afstandsscore var meget god med en Cronbachs alpha på 0,92. Scoringsmetodens måleviadisktisk diskuterer i denne afhandlings Studie 2 (se afsnit 4.4.3)

3.4.3.1.3 Opmærksomhed på sproglyd

Børnenes opmærksomhed på sproglyd blev ved førtest vurderet med de to deltest ”Konsonanter” og ”Forlyd og rimdel” i testbatteriet ”Læseevaluering på begyndertrinnet” (Borstøm og Petersen, 2006). Ved eftertest var det kun opgaven ”Konsonanter”, der blev brugt.

I begge deltest var børnenenes score antal korrekte svar. Vejledningen (Borstøm og Petersen, 2006) rapporterede en opgavehomogenitet med en Cronbachs alpha på 0,84 (god) i ”Konsonanter” og 0,79 (acceptabel) i ”Forlyd og rimdel”.

3.4.3.1.4 Bogstavkendskab

3.4.3.1.5 Ordforråd

Børnenes ordforråd blev vurderet ved før- og efter test med deltesten ”Find billedet” fra ”Læseevaluering på begyndertrinnet” (Borstøm og Petersen, 2006). I testen udtaler testtageren et ord, og dette skal børnenes sætte kryds over. Børnenene skal finde det rigtige billede blandt fem mulige. Der er semantiske distraktorer i testen. Testen gennemføres på papir. For en grundigere gennemgang af proceduren, se

3.4.3.1.6 Skriv frit
Børnenes frie skrivning blev vurderet ved eftertest. Børnene skulle skrive frit i fem minutter. De måtte skrive det, de gerne ville, men inden de skrev, talte testtager med børnene om, at de kunne skrive en hilsen til de små rumvæsner, som de i undervisningen havde lavet en ordbog til (se afsnit 3.4.4). Børnene skrev på et A4-ark med linjer (se bilag 8.6.4). Børnenes score i skriveopgaven var antallet af bogstaver i deres tekst. Optællingen blev gjort én gang af denne afhandlings forfatter. Enigheden for optælling af antal bogstaver er derfor ikke beregnet.

Motivationen for at inkludere en fri skriveopgave var at undersøge, om der ved eftertest var stor forskel på den mængde tekst eleverne i de forskellige grupper producerede – dette for at have et mål for børnenes skrivelyst. Målet var fra et andet perspektiv end stave- og læsemålene væsentligt for besvarelsen af forskningsspørgsmålene om de forskellige støttetypers effekt. Hvis en type af støtte har god effekt på stavning og læsning, men påvirker længden af de tekster, børnene skriver, negativt, så kan man argumentere for, at støtten påvirker skriveerfaringen negativt og stille spørgsmål til, om støtten i det lange løb vil være en god form for støtte. Hvis dette ikke er tilfældet, og en støtte, der har positiv effekt på stavning og læsning, ikke indvirker på længden af barnets tekster, så understøtter resultatet, at de eventuelle positive effekter ikke optræder sammen med mindre skriveerfaring.

3.4.3.2 Mål 1. kl.
3.4.3.2.1 Stavning

Børnenes score var antallet af korrekt stavede ord. Den rapporterede opgavehomogenitet for testen er god med en Cronbachs alpha på 0,89 for ”Staveprøve 1” og 0,91 for ”Staveprøve 2”.

Både en forskningsassistent og jeg transskriberede og opgjorde alle stavetestene. Transskriptionen blev lavet efter samme kriterier som beskrevet under staveprøven i børnehaveklassen (se afsnit 3.4.3.1.1). Der var enighed om scoren i 84,1 % af tilfældene. Ved uoverensstemmelse kiggede jeg det oprindelige arbejdsark igennem for de ord, der var uenighed om, og besluttede transskriptionen for disse items ud fra kriteriet, at fortolkningen skulle være til barnets fordel. Ved denne gennemgang opdagede jeg, at den lavere enighed i denne stavetest end den i børnehaveklassen, skyldtes, at jeg havde lavet en fejl ved transskriptionen, så vendte bogstaver ikke blev tolket til børnenes fordel. Denne fejl blev rettet ved gennemgangen af uoverensstemmelser mellem de to indskrivere.

3.4.3.2.2 Læsning
Børnenes læsning blev vurderet med deltesten ”Ordlæseprøve 1” fra ”Skriftspræbling udkvikling” (Juul, 2012). I denne deltest skal børnene læse enkeltord. De skal herefter angive, hvilket ord de læste, ved at krydse den illustration, der afbilleder ordet, ud. I opgavearkets venstre side er ordet skrevet. Ud for hvert ord er

Børnenes score var antallet af korrekt læste ord på fire minutter. Den rapporterede opgavehomogenitet for testen er god med en Cronbachs alpha på 0,80. Både en forskningsassistent og jeg opgjorde alle besvarelserne. Der var enighed om scoren i 97,3% af tilfældene. Ved uoverensstemmelser kiggede jeg igennem for de ord, der var uenighed om, og tjekkede korrektheden af barnets svar. Hvis markeringen var tvetydig, blev den scoret til barnets fordel.

3.4.4 Undervisningen
Dette afsnit er en beskrivelse af designet af og indholdet i den undervisning, som deltagerne i de tre eksperimentelle grupper, direkte lærerstøtte, IT-støtte, direkte lærerstøtte, fik. Kontrolgruppen deltog i den almindelige undervisning i børnehaveklassen, og indholdet i denne vil også blive beskrevet. Designet af undervisningen berøres først og omhandler tiltag, som blev gjort for at sikre intern validitet. Afsnittet slutter af med en beskrivelse af tiltag, der blev gjort for at sikre implementeringen af undervisningen (fidelti) (Swanson m.fl., 2013).

3.4.4.1 Tiltag for at begrænse uønskede systematiske forskelle
En række tiltag blev taget for at begrænse, at andre systematiske forskelle mellem studiets grupper end forskellene i undervisningen ville kunne forklare en eventuel effekt i studiet. Sådanne systematiske forskelle påvirker studiets interne validitet negativt (Bryman, 2016).

For at sikre, at fremgangen i de eksperimentelle grupper ikke blot var på grund af forskelligartet administrering af testen ved før- og eftertest, spontan fremgang eller en forventningseffekt, fordelt jeg, som tidligere beskrevet, tilfældigt deltagere fra den samme skoleklasse, til kontrolgruppen og de tre eksperimentelle grupper. Dermed er der for ingen af deltagerne tale om selvselektion.

Målet ordfør, som det ikke forventes, at de eksperimentelle grupper lærer mere om i perioden end kontrolgruppen, bruges som kontrolmål for at forhindre en eventuel forventningseffekt.

For at undgå lærer- eller klasseeffekt var der i hver af de fem deltagende klasser en kontrolgruppe og de tre eksperimentelle grupper. Det betød, at eventuelle forskelle mellem de fem klasser ville ramme lige i alle fire grupper. For de tre eksperimentelle grupper blev Undervisningen gennemført i små grupper med fire børn ad gangen. I hver af de fem klasser i studiet var der fire børn, som tilhørte kontrolgruppen, og også fire børn i hver af grupperne direkte lærerstøtte, IT-støtte og direkte lærerstøtte.

For at minimere graden, hvormed undervisningen i de tre eksperimentelle grupper blev påvirket af hinanden, foregik undervisningen for de tre eksperimentelle grupper i et adskilt lokale.

For at undgå eventuelle effekter af at skrive på tastatur versus at skrive i hånden skrev alle børn på skolens egne bærbare eller Chromebooks. Fordelen ved det var, at børnene var vant til at arbejde på disse. En konsekvens var dog, at hast og skærmstørrelse adskilte sig fra klasse til klasse, men fordi alle
eksperimentelle gruppe var i alle klasser, ramte eventuelle effekter af tastatur og skærmstørrelse alle grupper ens.

For at understøtte, at børnene arbejdede individuelt, stod der fire bærbare pc’er eller Chromebooks i det lokale, hvor børnene børnestavede, på et firemands bord med plads til et barn på hver side. Hvert barn havde på den måde sin egen arbejdsplads. Med denne opstilling kunne underviseren nemt komme rundt om bordet og hjælpe alle fire børn.

Undervisningen af de tre eksperimentelle grupper blev gennemført gruppe for gruppe. For at minimere effekten af rækkefølge, var rækkefølgen for de eksperimentelle grupper forskellig i de fem klasser, men stabil fra undervisningsgang til undervisningsgang i en given klasse (se bilag 8.9.1).

For at sikre, at en eventuel effekt af undervisningen ikke kunne forklares med en ene en lærereffekt, nemlig at jeg var særligt engageret i undervisningen generelt eller for én eller flere typer af undervisning, blev undervisningen gennemført af seks trænede forskningsassistenter, alle cand.mag.-audiologopædistuderende.

Af logistiske årsager kunne assistenterne ikke tildeles de fem deltagende klasser på en systematisk måde, men alle forskningsassistenter underviste i alle eksperimentelle grupper i en klasse i en periode (se bilag 8.9.2). Da alle grupper var i alle klasser, så påvirkede ingen forskningsassistent nogen gruppe mere end andre og vil derfor ikke kunne være årsag til en lærereffekt i dette studie.

På den måde blev studiet designet til at imødegå typiske trusler mod validiteten i eksperimentelle studier som selvselektion, lærereffekt, forventningseffekt, spontan fremgang, almindelig modning og forskelle i administreringen af testene (Bryman, 2016).

3.4.4.2 Undervisningen i de eksperimentelle grupper
Dette afsnit beskriver indholdet i undervisningen. Det er opdelt i to: en beskrivelse af det, der er generelt for undervisningen, og en beskrivelse af det, der er unikt for undervisningen i de tre eksperimentelle grupper.

3.4.4.2.1 Generelt indhold i undervisningen
Undervisningen i de tre eksperimentelle grupper bestod af tre ugentlige undervisningsgange a ca. 20 minutters undervisning samt 10 minutter til at komme ind i lokalet, sætte sig ved computeren, sige hej og lignende. Undervisningen forløb over seks uger, 18 undervisningsgange i alt. Antallet af undervisningsgange lærer sig op ad tidligere studier, som finder effekt af arbejdet med børnestavning ved undervisning af lignende varighed (Ouellette m.fl. 2013; Sénéchal m.fl. 2012).

De 54 ord skulle udvælges fra den ordbank, som de 72 ord til pilotstudiet af spredningen i den fonologiske afstandsscore for børnenes stavning blev trukket fra, og blev udvalgt, så de havde samme kendetegn som de 72 ord i pilotstudiet (nogle ord gik igen) (se afsnit 3.3.1). For at undgå, at ordene var for nemme, hvilket var en bekymring, der opstod i forbindelse med pilotstudiet, blev ord med to initiiale konsonanter også inkluderet (se afsnit 3.3.1.5) i ord med simple forbindelser mellem fonem og grafem og med en til to stavelsel og i enstavelsesord med komplekse fonem-grafem-forbindelser. Dermed var der i ordbanken ord i ni forskellige kategorier, se Figur 3.16.
En hypotese bag undervisningen var, at børnene i løbet af undervisningen ville blive bedre til at børnestave. Derfor skulle børnene de første undervisningsgange børnestave de nemmeste ord og sværhedsgraden af ordene skulle derefter øges gradvist. Samtidig skulle børnene også have udfordringer fra start, hvorfor flere kategorier af ord blev præsenteret på samme undervisningsgang. Dette blev operationaliseret sådan, at ord med komplekse fonem-grafem-forbindelser først blev introduseret halvvejs inde i forløbet og så ellers ved at lade ord med lavere kompleksitetsgrad optræde før ord med højere kompleksitetsgrad (se afsnit 3.3.1). Antallet af ord i hver kategori var baseret på et skøn og spredningen på afprøvningsordene (se afsnit 3.3.1.4). På baggrund af dette vurderede jeg, at der skulle være flest ord med simple fonem-grafem-forbindelser og med en kompleksitetsgrad på mellem et og to, færre med en på nul og færrest med en kompleksitetsgrad på tre. Alle ordene i træningen kan ses i bilag 8.9.3. Inden for den enkelte kategori er rækkefølgen på ordene i træningen tilfældig.

3.4.4.2.1.1 Undervisningens indpakning

For at børnene skulle opleve det som meningsfuldt at børnestave udvalgte ord, blev opgaven sat ind i en fantasiramme. Børnene fik at vide, at de (forskningsassistenten og børnene) den næste 18 undervisningsgange skulle forestille sig, at nogle venlige rumvæsner snart ville komme til Danmark, men at rumvæsnerne ikke kunne tale dansk, så de havde brug for en ordbog. Desværre kunne rumvæsnerne ikke læse noget, som voksne har skrevet, og derfor havde rumvæsnerne meget brug for, at børnene lavede bogen. Når ordbogen var færdig, ville den blive printet, så børnene kunne vise den til deres forældre – og så skulle rumvæsnerne selvfølgelig også have et eksemplar.

3.4.4.2.1.2 Barnets redskaber

Figur 3.17
Eksempel på udfyldt side for ordet pyjamas i den elektroniske bog.

Derudover havde børnene i alle eksperimentelle grupper adgang til alfabettavler, tegnepapir og farveblyanter. Alfabettavlerne var et A4-ark, som lå ved siden af barnet. Barnet kunne bruge disse til at huske formen på eller lyden af et bogstav. Tavlen havde hvert bogstav som stort og lille og et billede, hvis forlyd matchede de simple fonem-grafem-forbindelser, som blev brugt i dette studie (se afsnit 3.3.1). Tegnepapir og farveblyanter blev brugt, hvis der opstod ventetid, fordi alle fire børn fx havde brug for lærerens støtte samtidig.

Figur 3.18
Udsnit af alfabettavlen.

Note. Eksempel på alfabettavlens udseende.

3.4.4.2.1.3 Første undervisningsgang
Forskningsassistenten spurgte børnene, om de havde prøvet at børnestave før. I samtalen blev børnenes svar anerkendt og ledt hen på, at forskningsassistenten forklarede børnene, at de for at børnestave simpelt hen bare skulle lytte efter sproglyde i ordene og skrive de bogstaver, de synes, de kunne høre i ordene. Det blev understreget, at børnestavning ikke var forkert, da det netop var deres forsøg på at lytte efter lyde i ordene, og at den, fordi det var deres eget forsøg på at stave, godt kunne adskille sig fra hinandens og voksnes måde at stave ordene på.

Første undervisningsgang blev børnene instrueret i, hvordan de skulle gå ind på deres egen elektroniske bog ved at klikke på bogen med deres navn på, hvordan de vendte sider i bogen, aktiverede skriveområdet, og hvordan de skrev ved at trykke på tastaturet. For at minimere den tid, børnene skulle bruge på at lede efter et bogstav på tastaturet, og maksimere den tid, børnene brugte på at børnestave, blev de ved starten af hver undervisningsgang opmuntret til at spørge den voksne om hjælp, hvis de ikke kunne finde det bogstav, de gerne ville skrive, på tastaturet. Endvidere havde denne hjælp også det formål at undgå at børnene, med risiko for at miste motivationen for at skrive, blev frustrerede over, at de ikke kunne finde et bogstav på tastaturet.

Første gang, børnene skulle børnestave i den elektroniske bog, lød instruktionen til børnene som i eksemplet herunder (se Figur 3.19). Instruktionen var i plenum, men støtten blev givet individuelt.
3.4.4.2.1.4 Undervisningens struktur

Figur 3.20
Instruktionen til børnene før børnestavning i alle eksperimentelle grupper.

Forskningsassistent:

1. Så skal vi i gang med at skrive dagsens første ord.
2. Hvis du har brug for hjælp, mens du skriver, skal du blot spørge, så kommer jeg og hjælper dig.
3. Husk at sig sn til, når du er færdig med at børnestave ordet.
4. Hør særlig [bas] [bas:] [bas:] [bas].
5. Såg ordet langsomt sammen med mig [bas]. (Siger ordet langsomt sammen med barnet).
6. Nu siger du det langsomt for dig selv, lyt efter lyde i ordet. (Under skrivning hjælper forskningsassistenten som i beskrevet i Figur 3.20).

(Barnet får forskellig støtte til at udvikle sin børnestavning i de tre eksperimentelle grupper).

(Efter at barnet har fået støtte, bliver barnet bedt at prøve at skrive ordet igen).

Note. Den generelle instruktion er i Figur 3.20 eksemplificeret med ordet bas.

3.4.4.2.2 Unikt indhold i undervisningen
Dette afsnit beskriver den støtte, som børnene fik til at forbedre deres børnestavning, og som var unik for hver af de tre eksperimentelle grupper. De er her beskrevet kort, men kan ses i detaljer i bilag 8.9.6.1

3.4.4.2.2.1 Direkte lærerstøtte
Ved den direkte støtte blev børnene støttet i at forbedre kvaliteten af deres børnestavning, når de var færdige med deres børnestavningsforsøg. Støtten havde fem trin.

2. Forskningsassistenten skrev konventionel stavning under barnets børnestavning og lyderede under skrivningen.
3. Forskningsassistenten støttede barnet direkte til at sammenligne børnestavning og den voksnes stavemåde. Hjælpen havde fokus på at støtte barnet i at høre manglende lyde, forstå forskelle i bogstavvalg, identificere overflødige bogstaver.
5. Barnet fik nu lov at børnestave ordet igen.

3.4.4.2.2.2 IT-støtte
ved IT-støtte blev barnet støttet i at forbedre kvaliteten af deres børnestavning både under og efter skrivningen.

Mens børnene børnestavede:
1. Oplæsningsstøtte ved den syntetiske stemme, som var særligt udviklet til dette studie (se afsnit 3.2.1).

Efter at barnet havde skrevet ordet så godt, kan/hun kunne, havde forskningsassistentens støtte til formål at hjælpe børnene til at interagere med talesyntesen og på den måde få ordet til at lyde korrekt og når frem til den konventionelle stavning. Støtten havde fem trin:

1. Ros, som ved direkte støtte punkt 1 (se afsnit 3.4.4.2.2.1).
2. Forskningsassistenten støttede barnet i at bruge syntesen til at vurdere kvaliteten af børnestavningen ved at spørge “Siger computeren det rigtige ord?”

3. Hvis barnet ikke selv var nået frem til en fuldt fonologisk acceptabel stavemåde, så støttede forskningsassistenten barnet til at interagere med syntesen med henblik på at støtte barnet i at repræsentere manglende lyde og ændre bogstaver, der ikke var fonologisk acceptable. Den støtte barnet fik, afhäng således af kvaliteten af den børnestavning, barnet var nået frem til.

5. Herfra som punkt 4-5 ved direkte lærerstøtte (se afsnit 3.4.4.2.2.1).

3.4.4.2.2.3 Indirekte lærerstøtte

Ved indirekte støtte blev børnene støttet i at forbedre kvaliteten af deres børnestavning, når de var færdige med deres børnestavningsforsøg. Støtten havde fire trin, som svarede til trin 1, 2, 4 og 5 i gruppen direkte lærerstøtte. Derfor er støtten beskrevet i afsnit 3.4.4.2.2.1, dog var trin 3 ikke en del af støtten i gruppen indirekte lærerstøtte.

Da børnene i denne gruppe, fordi den støtte, de fik, var mindre omfattende, var hurtigere færdige med at skrive dagens seks træningsord, brugte de eventuelt overskydende tid på at tegne og farvelægge billeder af de ting, der var i ordbogen, og af de rumvæsener, som ordbogen var til.

3.4.4.3 Opsamling – indhold i undervisningen for de eksperimentelle grupper

Alle børnene i de eksperimentelle grupper skrev således seks ord hver undervisningsgang, tre nye og tre gentaget. Henover de 18 undervisningsgange havde ordene stigende sværhedsgrad, børnene skrev på computer, arbejdede individuelt, fik ros for deres børnestavning, blev præsenteret for den korrekte stavemåde, læste ordet højt sammen med forskningsassistenten og skrev ordet endnu en gang. I alle grupper blev eventuel ventetid brugt på at tegne. Ud over dette havde grupperne direkte lærerstøtte og IT-støtte – hver en måde at støtte børnene til at udvikle kvaliteten af deres børnestavning, som var særlig for denne gruppe.

3.4.4.3 Undervisningen i kontrolgruppen

Børnene i kontrolgruppen deltog i den almindelige klasseundervisning. Derfor var disse børn, i det modul, hvor de eksperimentelle grupper på skift var uden for klasselokalet, fortsat i klasse, hvor undervisningen forløb som normalt. Disse børn modtog altså ingen særlig undervisning.

Den undervisning, der foregik i børnehaveklasserne i dette studie, og som både kontrolgruppen og de eksperimentelle grupper var en del af, kontrolgruppen mere end de eksperimentelle grupper, beskrives kort i dette afsnit – dels med udgangspunkt i Fælles Mål for børnehaveklassen (kilde: https://arkiv.emu.dk/sites/default/files/M%C3%A5l%20for%20b%C3%B8rnehaveklassen_0.pdf) og dels ud fra de fem børnehaveklasselederes besvarelse af et spørgeskema om indholdet i undervisningen.

Det er interessant at kende til indholdet i børnehaveklassen, da effekten af undervisningen i de eksperimentelle grupper kan ses som den adderede effekt af den naturlige udvikling, almindelige undervisning og den eksperimentelle undervisning, mens effekten i kontrolgruppen kommer fra den naturlige udvikling og den almindelig undervisning. En eventuel større effekt i en eller flere eksperimentelle grupper end i kontrolgruppen kan tilskres det ekstra bidrag, den eksperimentelle undervisning giver. Det
er nemmere at vise effekt af en eksperimentel undervisning, hvis deltagerne i kontrolgruppen ikke får relevant undervisning.

Det gør at det er væsentligt at kende til, om indholdet i den almindelige undervisning bestod i aktiviteter, som kunne udvikle børnenes forståelse af det alfabetiske princip, eller om kontrolgruppen ikke modtog relevant undervisning. Relevant undervisning defineres i denne sammenhæng som aktiviteter, der har fokus på opmærksomhed på sproglyde, bogstavkendskab, stavning og læsning.

Samtidig er det også væsentligt at kende til den almindelige undervisning, da effekten i de eksperimentelle grupper ikke nødvendigvis ville opstå i en børnehaveklasse, hvor indholdet af den almindelige undervisning var meget anderledes.

Af Fælles Mål for børnehaveklassen fremgår det, at kompetencemålet for kompetenceområdet sprog i børnehaveklassen er, at ”eleven er opmærksom på forskellige måder at anvende sprog på” (kilde: https://arkiv.emu.dk/sites/default/files/M%C3%A5l%20for%20b%C3%B8rnehaveklassen_0.pdf) og for færdigheds- ogvidensområdet sprog og sproglig bevidsthed er opmærksomhedspunkterne, ”at eleven kan genkende alle bogstavernes form, navn og lyd (udtagen q, w, x og z)” (kilde: https://arkiv.emu.dk/sites/default/files/M%C3%A5l%20for%20b%C3%B8rnehaveklassen_0.pdf).

Færdigheds- ogvidensmål for kompetenceområdet sprog for færdighederne sproglig bevidsthed, skrivning og læsning beskriver alle mål for undervisningen, som er i overensstemmelse med indholdet i det arbejde, børnene i de eksperimentelle grupper laver. Børnene skal ifølge målene nå frem til at kunne lege med bogstavlyde, kende bogstav-lyd-forbindelser og enkle regler for orddannelse, kunne skrive og læse små tekster, kunne bruge det alfabetiske princip i stavning og læsning. Også vejledningen og læseplanen for børnehaveklassen (kilde: https://arkiv.emu.dk/modul/b%C3%B8rnehaveklassen-%E2%80%93-%C3%A6lles-m%C3%A5l-%C3%A6seplan-og-vejledning) fremhæver undervisning med fokus på bogstaver, sproglyde og sammenhængen mellem disse – det alfabetiske princip i stavning og læsning.

Børnehaveklassedeleverne blev også spurgt til, i hvor høj grad de brugte tid på at arbejde med faglige områder i undervisningen: 1) tal og mængder, 2) bogstaverne form, navn og lyd, 3) opmærksomhed på sproglyde, 4) børnestavning og 5) læsning af lydrette ord. Først blev børnehaveklassedeleverne spurgt, om de havde arbejdet med det faglige område i undervisningen i de seks uger, undervisningen i de eksperimentelle grupper havde stået på. Alle børnehaveklasseedeleverne svarede, at de havde brugt tid på hvert af de fem faglige områder i undervisningen. Dernæst blev de spurgt, hvor meget tid de vurderede, at klassen i gennemsnit havde brugt om dagen på hvert af de fem områder. Børnehaveklasseedeleverne skulle krydse af, om der var tale om mindre end 15 min., mellem 15 og 30 min., mellem 30 og 45 min., mellem 45 og 60 min. eller mere end 60 min. Alle spørgsmål og svarmuligheder kan ses i bilag 0. Antallet af børnehaveklasseedeleverne, som for hvert af de fem områder vurderede, at et givent tidsrum svarede til den tid, de i gennemsnit brugte på elementet dagligt, er angivet i Figur 3.21.

I denne oversigt er det tydeligt, at børnehaveklasseedeleverne selv vurderede, at de dagligt brugte tid på de faglige områder, som også fremgår af Fælles Måls videns- og færdigheds mål. Selvom børnehaveklasseedelevernes vurdering af tid nok er upræcisk, så er det rimeligt sikkert, at de har brugt tid på området i Figur 3.21 Fej! Et bogmærke kan ikke henviser til sig selv, og at den almindelige undervisning dermed har indheoldt aktiviteter med fokus på opmærksomhed på sproglyde, bogstavkendskab, stavning og læsning.
Figur 3.21
Faglige områder i børnehavesklasseundervisningen og børnehavesklasseledernes vurdering af deres tidsforbrug på området.

<table>
<thead>
<tr>
<th>Tat og mångdor:</th>
<th>Under 15 min</th>
<th>15 til 30 min</th>
<th>30 til 45 min</th>
<th>45 til 60 min</th>
<th>Mere end 60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bogstavernes form, navn, lyd:</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Opmærksomhed på sproglæse:</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Børnestavning:</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Læsning af lydrette ord:</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Det daglige gennemsnitlige tidsforbrug og antallet af børnehavesklasseledere, der vurderer, at denne tidsramme svarer til det daglige gennemsnitlige tidsforbrug for et givent område.

En eventuel større effekt i en eller flere eksperimentelle grupper end i kontrolgruppen kan tilskrives det ekstra bidrag, den eksperimentelle undervisning giver, og kan ikke forklares ved, at undervisningen, som kontrolgruppebørnene fik, var irrelevant. Fordi indholdet i undervisningen i klassen har samme fokusområde som indholdet i den eksperimentelle undervisning, er det forventeligt, at forskellen mellem kontrolgruppen og den eksperimentelle grupper er mindre, end hvis kontrolgruppen ikke havde modtaget undervisning med aktiviteter, der havde fokus på disse områder. Samtidig er det ikke sikkert, at indholdet i den eksperimentelle undervisning ville have haft samme effekt i en kontekst, hvor børnene fx ikke havde fået undervisning i opmærksomhed på sproglæse.

3.4.4.4 Kvaliteten i gennemførelsen af undervisningen

3.4.4.4.1 Træning af forskningsassisterenter

Forskningsassisterenterne havde på grund af deres uddannelse viden om læseaudvikling og læseundervisning. Dette betød, at de alene skulle undervises i de tre undervisningsformer, de skulle udføre, samt have praktiske informationer om deres arbejdsopgaver før og efter undervisningen, tidsregistrering og transport. Forskningsassisterenterne fik en tjkliste med alle logistikdetaljer og arbejdsopgaver før og efter undervisningen, som de var ansvarlige for.

Jeg gennemførte træningen, som blev gennemført over to dage med tre timer hver dag. Træningen havde til formål at undervise forskningsassisterenterne i, hvordan de skulle støtte børnene i at børnestave i de tre eksperimentelle grupper. Dette blev gjort på baggrund af et oplæg med udgangspunkt i vejledning (se bilag 8.9.6) og dernæst med cases og rollespil, hvor assistenterne to og to skiftedes til at være barn og underviser. Barnet børnestavede og undervisere gav støtte. Imens gav jeg forskningsassisterenterne feedback på deres støtte med det formål at justere den ind efter vejledningen. Forskningsassisterenterne fik mellem første og anden træningsgang en vejledning med hjem med en grundig beskrivelse af den støtte, børnene skulle have på deres børnestavning, så de kunne øve sig på at give børnene støtte.

Ud over disse tre træningsgange deltog enten jeg eller én af to udvalgte superbruger-forskningsassisterenter som supervisor ved første undervisningsgang med det formål at give feedback på forskningsassistentens undervisning for at understøtte, at den fulgte vejledningen. Superbruger-forskningsassisterenterne havde selv gennemført tre ugers undervisning, jeg havde superviseret deres undervisning, jeg havde observeret en meget sikker og tilfredsstillende gennemførelse af undervisningen, hvorfor de blev vurderet til at kunne give en anden forskningsassistent tilfredsstillende supervision.

De tre ovenstående tiltag: træningsdag, skriftlig vejledning, supervision skulle sikre, at forskningsassisterenterne kunne gennemføre undervisningen i de eksperimentelle grupper.
Det er endvidere væsentligt at inkludere fidelity-mål for at vurdere implementeringen af undervisningen i effektstudier (Swanson m.fl., 2013). Disse oplysninger kan nuancere tolkningen af resultaterne og vurderingen af resultaternes gyldighed. Med det formål at have et fidelity-mål for, i hvor høj grad forskningsassistenterne gennemførte undervisningen i effektundersøgelsen (se afsnit 3.4.4) som planlagt, blev forskningsassistenterne bedt om at udfyde et spørgeskema ved slutningen af uge tre og ved slutningen af hele undervisningsforløbet.

Spørgeskemaet havde 10 spørgsmål, som skulle besvares ved at sætte kryds på en femtrinskala med valgmuligheden "altid" i den ene ende af skalaen og valgmuligheden ”det har jeg helt glemt” i den anden ende af skalaen. Hvert af de ti spørgsmål adresserede, i hvor høj grad forskningsassistenterne selv vurderede, at de havde implementeret indholdselementerne i undervisningen i de eksperimentelle grupper. Spørgsmål et til fire og otte til ti adresserede indhold, som var i alle de eksperimentelle grupper, og spørgsmål fem til syv adresserede det unikke indhold i de eksperimentelle grupper.

Alle spørgsmål og svarmuligheder kan ses i bilag.9.5. Besvarelse ”altid” svarede til 100 % implementering, og ”det har jeg helt glemt” svarede til 0 %. I gennemsnit var forskningsassistenternes vurderede implementering 93 %. For spørgsmålene fem til syv, der omhandlede det, der var specifikt for de tre eksperimentelle grupper, var den gennemsnitlige vurdering af implementering 95 %. Forskningsassistenterne var helt sikre i deres implementering af direkte lærerstøtte, men vurderede sig selv med henholdsvis 89 % og 96 % procent for spørgsmålet om IT-støtte og direkte lærerstøtte. Dette kan måske være et resultat af, at disse typer af støtte var mere tidskrævende og komplicerede for forskningsassistenterne at give end de direkte lærerstøtte. Det er muligt, at en eventuel effekt i grupperne IT-støtte og direkte lærerstøtte i nogen grad er blevet negativt påvirket af dette. Denne indsigts er væsentlig for vurderingen af resultaternes gyldighed.

Et andet mål for kvaliteten af undervisningen er antallet af gange, børnene deltager i undervisningen. Antallet af gange, børnene i de eksperimentelle grupper deltog i undervisningen, var i gennemsnit meget ens. For direkte lærerstøtte var M =16,15, SD =1,39, for IT-støtte M =16,00, SD =2,27 og for direkte lærerstøtte M =16,70, SD =1,42. Det planlagte antal af undervisningsgange var 18, så børnene var altså i gennemsnit fraværende 1-2 gange. Børnene har ikke i én gruppe fået væsentlig mindre undervisning end børnene i en anden gruppe, vurderet ved gennemsnittene, hvorfor jeg ikke betragter antallet af undervisningsgangen som en ukontrolleret systematisk påvirkning af resultatet i en bestemt retning.

3.5 Resultater. Studie 1
Formålet med afsnittet er at præsentere resultaterne af analyser, som kan besvare de tre forskningsspørgsmål i Studie 1. De to første forskningsspørgsmål spørger henholdsvis, om børnene lærer mere af den direkte lærerstøtte end af den indirekte og sammenligneligt af IT-støtte og direkte lærerstøtte i forhold til børnenes stavning, læsning, opmærksomhed på sproglyde og bogstavkendskab?

3.5.1 Præsentation af analysemetoder
Forskningsspørgsmålene besvares i flere trin.
Først præsenteres deskriptiv statistik og resultater af analyser, der sammenligner børnenes præstation ved førtest på stavning, læsning, opmærksomhed på sproglyde, bogstavkendskab og ordførråd. Dette gøres for
at dokumentere, at de tilfældigt fordelte deltagere i de fire grupper (kontrolgruppen, indirekte lærerstøtte, IT-støtte, direkte lærerstøtte) ikke adskiller sig statistisk signifikant fra hinanden ved førtest.

Herefter præsenteres deskriptiv statistik for børnenes præstation ved eftertesten for stavning, læsning, opmærksomhed på sproglyd, bogstavkendskab, skriv frit og ordforsøget. Før- og eftertest sammenlignes med parrede t-test for at få indblik i den fremgang, eleverne i de fire deltagergrupper har for de fire afhængige variable (stawning, læsning, opmærksomhed på sproglyd, bogstavkendskab), som er væsentlig for besvarelsen af forskningsspørgsmålene (se afsnit 3.3).

Dernæst bruges, for stavning, læsning, opmærksomhed på sproglyd og bogstavkendskab, variationer af ANCOVA-analyser for at sammenligne de justerede eftertest-scoren i de fire deltagergrupper. Førtestscoren bruges som kovariat, da denne er et karakteristikum ved deltagerne i de fire deltagergrupper, som det gavner præcisenen i resultatet af ANCOVA-analysen at tage høje for. Dette gøres for at vurdere forskelle mellem grupper vurderet ved deres justerede gennemsnit på færdigheder, som bruges til at måle effekt af undervisningen. Med samme formål bruges en ANCOVA-analyse til at belyse, om der er forskelle mellem deltagergrupperne i længden af deres tekster ved fri skrivning.

Endvidere sammenlignes børnenes mellem deltagergrupper i længden af deres tekster ved fri skrivning.

Herefter sammenlignes andelen af børn, som forbedrer deres stave- og læsescore fra før- til eftertest. Til denne sammenligning bruges Chi i anden-testen af homogenitet til at belyse, om der imellem deltagergrupperne er forskelle i andelen af børn, der har fremgang fra før- til eftertest. Formålet er at belyse forskningsspørgsmålene ved at se bedre undervisning som undervisning, hvor flere deltagere har fremgang, i stedet for at vurdere undervisningseffektivitet ved en sammenligning af deltagegruppers justerede gennemsnit ved eftertest, hvilket ANCOVA-analyserne gør.

I Studie 1 var der fra start en specifik hypotese om forskelle mellem deltagergrupper. Denne varierede fra effektmål til effektmål og er beskrevet i afsnit 3.3. Hypotesen undersøges på to måder – dels ved at sammenligne hver eksperimenterel gruppe med kontrolgruppen og dels ved en direkte sammenligning af direkte med indirekte lærerstøtte samt direkte lærerstøtte og IT-støtte. De udvalgte sammenligninger blev vurderet ved posthoc-analyser med Bonferroni-justering for multiple sammenligninger. For hver effektmål besvares dermed, om der er signifikante forskelle i eftertest-scoren for de udvalgte gruppesammenligninger, og dermed om direkte lærerstøtte er bedre end indirekte lærerstøtte, og om udbyttet af IT-støtte er sammenligneligt med udbyttet af direkte lærerstøtte. Som mål for effektstørrelsen bruges Cohens d (Cohen, 1988), som beregnes med de justerede gennemsnit og det vægtede gennemsnit af standardafvigelserne for de to grupper, der sammenlignes.

Stavetestens scoringsmetode (se afsnit 3.4.3.1) gjorde det, for effekten på stavning, muligt at lave analyser med både den fonologiske og den ortografiske afstandsscore som afhængig variabel. ANCOVA-analyserne laves derfor for stavning med begge afstandsscore. Formålet er at belyse forskningsspørgsmål 3 ved at afgøre, om forskelle mellem grupper kun indfanges af den ene scoringsmetode og ikke af den anden.

Der blev for stavning ved eftertest for begge scoringsmetoder lavet to ANCOVA-analyser. Den første er en gentagen ANCOVA med stavning af trænede og utrænede ord ved eftertest som gentaget mål, deltagergruppe som uafhængig variabel og førtest-stavning som kovariat. Denne belyser om der

1 Statistisk signifikant betegnes fremadrettet blot signifikant
overordnet er en hovedeffekt af deltagergupper og belyser forskellen mellem disse på den samlede stavetest ved eftertest. Endvidere belyser den børnenes præstation på ord, de har øvet i undervisningen, og ord, der ligner disse, men som er utrænede. Formålet er at undersøge, om eventuelle forskelle mellem deltagergupper både er til stede i trænede og utrænede ord, og resultatet derfor ikke alene kan forklares som udenadslære, men indikerer en overfringseffekt af det, børnene har trænet til nye ord.

Den anden er i en en-vejs-ANCOVA-analyse med utrænede ord ved eftertest som afhængig variabel, deltagerguppe som uafhængig variabel og stavning ved førtest som kovariat. Formålet er at belyse forskelle mellem deltagergupper på utrænede ord, da forskelle mellem grupper for disse ord i særlig grad siger noget om effekten af undervisningen.

Læsetestens scoring (se afsnit 3.4.3.1.2) er alene fonologisk. Dette er for at have en scoringsmetode, der var så fæl som for forskelle i endnu ikke etableret læsning, at jeg kunne lade testen bestå af ord, som børnene havde trænet, og som lignede dem, børnene havde trænet, uden at næsten alle børn ville have en nulscore. Fordelingen af score i børnenes læsning var dog alligevel præget af gulveffekt ved før- og eftertest, vurderet ved visuel inspektion af kassediagrammer og gennemsnit og standardafvigelse for denne variabel (se Tabel 3.4 og Figur 4.3). På den baggrund valgte jeg i analysen af forskellen mellem børnene i de fire deltagergupper alene at lave analyser for den samlede læsescore. Ved at undlade at opdele skalaen i to skalæer med seks item ønskes jeg at understøtte en så normal som mulig fordeling af score. Det betyder også, at resultaterne for forskellen mellem grupper i læsning både gælder for trænede og utrænede ord. Der blev lavet en-vejs-ANCOVA-analyse med læsning ved eftertest som afhængig variabel, deltagerguppe som uafhængig variabel og stavning ved førtest som kovariat. Formålet er at belyse forskelle mellem deltagergupper på læsning, da forskelle mellem grupper indikerer effekt af undervisningen på læsning.

For **omærksomhed på sproglyde og bogstavkendskab** sammenligner jeg, deltagergupper ved eftertest på børnenes evne til at danne syntese, genkende sproglyde og deres viden om bogstavlyde. Som for læsning sammenligner jeg med en-vejs-ANCOVA-analyser med scoren ved eftertest som afhængig variabel, deltagerguppe som uafhængig variabel og scoren ved førtest som kovariat.

Sidst belyses svaret på forskningsspørgsmål 1 og 2 yderligere ved at undersøge **langtidseffekten** af undervisningen i de **ekspерimentelle** grupper for læsning og stavning ved to ANCOVA-analyser med stavning henholdsvis læsning ved opfølgende test i 1. kl. som afhængig variabel, deltagerguppe som uafhængig variabel og med førtest-scoren for stavning henholdsvis læsning som kovariat.

Ved opfølgende eftertest i 1. kl. sammenlignes gruppernes stave- og læsescore for at vurdere langtidseffekten af undervisningen. Meget få studier har målt langtidseffekten af undervisning med børnestavning, og i disse modtager **kontrolgruppen** endnu ikke egentlig undervisning i centrale forudsætninger for læsning, eller testen, der bruges til at måle langtidseffekter, er meget undervisningsnær (se afsnit 3.1.3.3).

I Studie 1 modtager **kontrolgruppen** og de **ekspерimentelle** grupper sideløbende undervisning i centrale forudsætninger for læsning, så derfor vil en eventuel langtidseffekt ikke kunne forklares som en generel effekt af tidlig indsat. En langtidseffekt skal så forklares ved, at undervisningen i børnestavning lærer børnene noget andet end det, børnene lærer i klassen, og at dette “andet” på længere sigt er væsentlig for udviklingen af stavning og læsning. Hvis der ikke er en langtidseffekt i dette studie, er der flere mulige forklaringer. Dels kunne en forklaring være, at børnene i de **ekспerimentelle** grupper lærer det samme, som børnene i klassen lærer, blot hurtigere. Denne forklaring ville pege på børnestavning som endnu en undervisningsmetode med positiv effekt på børnenes tidligere stavning og læsning. En anden forklaring, som
ikke behøver at udelukke den første, kan være, at effekten af børnestavning drukner i al den undervisning og alle de andre forskelle, der over tid påvirker deltagerne i studiet, og derfor ikke kan spores et år efter træningen.

Jeg forventer ikke langtidseffekter af undervisning med børnestavning, da jeg forventer at børnene i undervisningen med børnestavning lærer at anvende det alfabetiske princip i stavning og læsning. På den baggrund forventer jeg ikke, at børnene i undervisning med børnestavning lærer noget “andet” end det, de i forvejen arbejder med i klassen. I det perspektiv er undervisning med børnestavning endnu et godt redskab til udviklingen af tidlige skriftsproglige færdigheder.

3.5.2 Førtest

For hver gruppe af deltager er gennemsnit og standardafvigelser præsenteret i Tabel 3.4. Scoren for de to stavemål og læsemålet er baseret på det antal ændringer, som Pontossoftwaren (Kessler, 2009) skal foretage for at omdanne barnets stave- eller læseforsøg til målordet, så en lav score er for disse mål bedre end en høj score, og nul er den bedste score. For gennemgang af scoringsmetoden, se afsnit 3.4.3.1.1 og 3.4.3.1.2.

3.5.2.1 Stavning

For de to stavemål var scoren numerisk bedre i kontrolgruppen end i de tre eksperimentelle grupper, særligt i forhold til direkte og direkte lærerstøtte (se Tabel 3.4). En en-vejs ANOVA blev lavet for at bestemme, om den numeriske forskel mellem de fire grupper i studiet (kontrol, direkte lærerstøtte, indirekte lærerstøtte, IT-støtte) var signifikant for de to stavemål.

Først gennemgås analysens forudsagn og dernæst præsenteres resultatet. Kassediagrammer viste ingen ekstreme scorer og for alle grupper, på nær kontrolgruppen, var data normalfordelt, vurderet ved Shapiro-Wilk test, p > 0.5. Selv om dette er en overtrædelse af antagelsen om normalitet, så blev en en-vejs ANOVA alligevel lavet, da analyserne er rimelig robust mod overtrædelser af antagelsen om normalitet ved ens gruppestørrelse (se Tabel 3.4) på tærs af grupper (Field, 2013). Der var variansinhomogenitet, vurderet ved Levene test af variansens homogenitet, p > 0.003. Som en følge af overtrædelsen af antagelsen om homogenitet blev Welch ANOVA brugt. Den numeriske forskel mellem grupper ved førtest var ikke signifikant for hverken den fonologiske afstandsscore Welchs F(3, 41,5) = 0,404, p = .756 eller den ortografiske afstandsscore Welchs F(3, 41,6) = 0,309, p = .818.

3.5.2.2 Læsning

Den fonologiske afstandsscore for læsning var generelt høj (se Tabel 3.4), hvilket er et tegn på, at børnene havde lav læsefærdighed. Scoren var numerisk bedre i kontrolgruppen end i de tre eksperimentelle grupper. Den lave læsescore kan dels tilskrives, at et inklusionskriterie i studiet var, at børnene ikke måtte kunne læse mere end fire ord fonologisk acceptabelt (se afsnit 3.4.1). Som for stavning blev en-vejs ANOVA brugt til at undersøge, om de numeriske forskelle var signifikante.

Først blev antagelserne gennemgået. Kassediagrammer for læsescoren viste syv ekstreme datapunkter. Dette skyldes, at fordelingen af læsescore ved førtest er venstreskævt, fordi kun få børn læser mere end nul ord. Derved er der kun enkelte deltagere med lave score og mange deltagere med høje score. For at kunne anvende ANOVA-analysen til at vurdere, om der er forskelle mellem grupperne, transformeres scoren. Field (2013) foreslåv ved venstreskæve data at vende scoren og enten kvadratod- eller logtransformere data. Læsedataene blev kvadratrodtransformeret (se Ligning 1.).
Ligning 1.
Formel for transformationen af førtest læsescoren.

\[
\text{LÆSE.FA}_{\text{trans}} = \text{SQRT}((\text{Maks}(\text{LÆSE.FA}) + 1) - \text{LÆSE.FA})
\]

Note. $\text{LÆSE.FA}_{\text{trans}}$=transformeret score for LÆSE.FA, LÆSE.FA=variablen fonologisk afstand for læsning ved førtest, SQRT=kvadratrodstransformering, Maks=højeste score.

Kassediagrammer for de transformerede score viste fortsat ekstreme værdier. Analysen blev dog gennemført med disse, da datapunktene blev vurderet som reelle. For at sikre, at resultatet af analysen ikke i voldsom grad var påvirket af disse ekstreme datapunktter, blev også den ikke-parametriske Kruskal Wallis H test lavet. Resultatet for denne rapporteres efter ANOVA-analysen. For direkte lærerstøtte og kontrolgrupper var antagelsen om normalitet ikke overholdt, $p <,05$, men da ANOVA ved ens gruppestørrelse (se Tabel 3.4) er rimelig robust over for brud på denne antagelse (Field, 2013), så blev analysen gennemført. Alle andre antagelser var overholdt. Den numeriske forskel i læsning mellem grupper ved førtest var ifølge en-vejs ANOVA ikke signifikante $F(3, 76) =1,051$, $p =,375$. I overensstemmelse med disse resultater viste Kruskal Wallis H test, at median-læsescoren ikke adskilte sig signifikant mellem grupperne $H(3)=1,133$, $p =,769$.

3.5.2.3 Opmærksomhed på sproglyd
For børnelenes evne til at danne syntese ("Forlyd- rim"), blev en-vejs ANOVA lavet for at undersøge, om der er forskelle mellem de fire deltagergrupper. For denne score viste kassediagrammerne to ekstreme scorer, men da de blev vurderet til at være reelle data og ikke ekstremer i en sådan grad, at gennemsnittet blev meget påvirket af dem, blev de bibeholdt. Alle andre antagelser var overholdt. Der var en lille numerisk forskel mellem grupperne, men denne forskel var ikke signifikant $F(3, 76) =,460$, $p =,711$.

For børnelenes evne til at genkende sproglyde ("Konsonanter"), blev grupperne også sammenlignet med en-vejs ANOVA. For IT-støtte og indirekte lærerstøtte var data ikke normalfordelt, Shapiro-Wilk test, $p >,05$. Analysen blev alligevel lavet, da grupperne havde nogenlunde samme størrelse, og analysen i det tilfælde, som før beskrevet, er rimelig robust. Alle andre antagelser var overholdt. Forskellene mellem deltagergrupper var ikke signifikant $F(3, 75) =0,142$, $p =,934$.

3.5.2.4 Bogstavkendskab
For bogstavnavn blev der også lavet en-vejs ANOVA for at belyse, om der var signifikante forskelle mellem de fire deltagergrupper. Først blev analysens antagelser tjekket. Kassediagrammer viste ekstreme score, og data var ikke i nogen grupper normalfordelt. Derfor blev scoren transformerer ved at vende og logtransformere den. Samme procedure blev brugt som for læsescoren (se Ligning 1.), dog blot med log-i stedet for kvadratrodstransformering. Med den transformerede score var der kun to ekstreme værdier. Disse blev dog ikke udelukket fra analysen, da de blev anset for at have begrænset indflydelse på resultatet. Alle andre antagelser var overholdt for den transformerede score. Den lille numeriske forskel mellem deltagergrupperne var ikke signifikant $F(3, 75) =0,210$, $p =,889$.

For kendskab til bogstavernes lyd blev samle analysen lavet med samme formål. For disse scorer viste kassediagrammer to ekstreme værdier, og data var ikke i nogen grupper normalfordelt, vurderet ved Shapiro-Wilk test, $p <,05$. Ligesom for læse- og bogstavnavnscore blev data vendt om, og scoren kvadratrodstransformeret (se Ligning 1.). De transformerede data var ikke normalfordelte i kontrolgrupper, Shapiro-Wilk test $p <,05$, men som før nævnt er ANOVA robust i en situation med ens gruppestørrelse. Alle andre antagelser var overholdt for den transformerede score. Den lille numeriske forskel mellem grupper var ikke signifikant $F(3, 75) =0,171$, $p =,915$.

80
<table>
<thead>
<tr>
<th>Mål (min.-maks, items)</th>
<th>KG</th>
<th>IL</th>
<th>IT</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavning. FA. (0-IM,10)*</td>
<td>24,29 (14,37)</td>
<td>27,42 (9,34)</td>
<td>25,15 (10,94)</td>
<td>27,45 (8,00)</td>
</tr>
<tr>
<td></td>
<td>22,27 (15,27)</td>
<td>18,44 (13,97)</td>
<td>16,29 (12,71)</td>
<td>15,08 (9,78)</td>
</tr>
<tr>
<td>Stavning. OA. (0-IM,10)*</td>
<td>26,57 (13,22)</td>
<td>28,92 (8,80)</td>
<td>26,82 (10,04)</td>
<td>28,84 (7,52)</td>
</tr>
<tr>
<td></td>
<td>23,95 (14,31)</td>
<td>20,54 (13,63)</td>
<td>18,33 (12,42)</td>
<td>17,03 (9,65)</td>
</tr>
<tr>
<td>Stavning. FA. (0-IM, 18)*</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
</tr>
<tr>
<td></td>
<td>41,39 (27,11)</td>
<td>34,50 (24,14)</td>
<td>27,49 (22,51)</td>
<td>28,57 (17,75)</td>
</tr>
<tr>
<td>Stavning. OA. (0-IM, 18)*</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
</tr>
<tr>
<td></td>
<td>46,11 (24,67)</td>
<td>40,11 (22,98)</td>
<td>35,87 (20,49)</td>
<td>33,93 (16,22)</td>
</tr>
<tr>
<td>Stavning. FA. Utrænede (0-IM, 9)</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
</tr>
<tr>
<td></td>
<td>23,22 (12,14)</td>
<td>17,98 (12,27)</td>
<td>14,70 (12,11)</td>
<td>14,50 (9,31)</td>
</tr>
<tr>
<td>Læsning. FA. (0-159,12)*</td>
<td>132,00 (24,80)</td>
<td>142,70 (11,39)</td>
<td>138,10 (16,46)</td>
<td>139,70 (15,77)</td>
</tr>
<tr>
<td></td>
<td>119,20 (41,08)</td>
<td>111,15 (42,15)</td>
<td>102,85 (52,39)</td>
<td>109,30 (34,41)</td>
</tr>
<tr>
<td>Bogstavnavn (0-29)*</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
</tr>
<tr>
<td></td>
<td>23,21 (4,34)</td>
<td>23,25 (5,27)</td>
<td>24,00 (5,07)</td>
<td>22,75 (6,67)</td>
</tr>
<tr>
<td>Bogstavlyd (0-20)*</td>
<td>14,45 (4,93)</td>
<td>14,90 (4,93)</td>
<td>15,63 (3,79)</td>
<td>15,55 (4,33)</td>
</tr>
<tr>
<td></td>
<td>15,70 (4,71)</td>
<td>16,15 (4,97)</td>
<td>17,80 (2,31)</td>
<td>17,65 (3,44)</td>
</tr>
<tr>
<td>OPS – Konsonanter (0-10)*</td>
<td>6,21 (3,91)</td>
<td>5,70 (3,05)</td>
<td>5,80 (3,47)</td>
<td>6,20 (2,86)</td>
</tr>
<tr>
<td></td>
<td>6,95 (3,19)</td>
<td>6,75 (3,16)</td>
<td>7,90 (2,77)</td>
<td>6,90 (2,79)</td>
</tr>
<tr>
<td>OPS – Forlyd og rim (0-15)*</td>
<td>7,95 (3,14)</td>
<td>8,70 (2,96)</td>
<td>9,10 (2,57)</td>
<td>8,35 (3,34)</td>
</tr>
<tr>
<td></td>
<td>10,90 (3,34)</td>
<td>10,50 (3,27)</td>
<td>11,60 (3,15)</td>
<td>11,10 (2,81)</td>
</tr>
<tr>
<td>Ordforråd (0-30)*</td>
<td>17,70 (4,60)</td>
<td>19,50 (5,41)</td>
<td>19,63 (4,83)</td>
<td>19,20 (3,73)</td>
</tr>
<tr>
<td></td>
<td>18,60 (5,03)</td>
<td>20,40 (5,05)</td>
<td>20,42 (4,90)</td>
<td>20,15 (4,20)</td>
</tr>
<tr>
<td>Skriv frit (0-IM, 1)</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
<td>IFS</td>
</tr>
<tr>
<td></td>
<td>19,95 (11,67)</td>
<td>22,10 (12,67)</td>
<td>23,25 (13,40)</td>
<td>23,15 (15,69)</td>
</tr>
</tbody>
</table>

Note. For hvert mål er førtestscoren noteret øverst og eftertestscoren nederst, n=20, medmindre andet er angivet, standaradafvigelsen er angivet i parentes efter gennemsnittet, IM=ingen maksimumsscore, FA=fonologisk afstandsscore, OA=ortografisk afstandsscore, IFS=ingen førtest-score, IES=ingen eftertest-score, OPS=opmærksomhed på sproglyd, min=minimumscore, maks=maksimumsscore, items=antallet af items i testen.

a Fejlscore. Minimumsscore er den bedste mulige score.

b I denne test er maksimumsscoren lig med antallet af items i testen og derfor ikke angivet.

n=19.

n=18.

3.5.2.5 **Ordforråd**

For ordforrådet ved førtest blev endnu en-vejs ANOVA gennemført for at belyse, om der var signifikante forskelle mellem de fire deltagergrupper. Den eneste antagelse for analysen, der ikke var overholdt, var antagelsen om normalfordelte data i gruppen direkte lærerstøtte, vurderet ved Shapiro-Wilk test, p <,05. Men da ANOVA er robust ved ens gruppestørrelse blev analysen alligevel foretaget. Analysen viste ingen signifikante forskelle mellem deltagergrupper i børnenes ordforråd F(3, 75) =0,717 , p=.545.
3.5.2.6 Opsamling - førtest
De statistiske analyser viste ingen statistisk signifikante forskelle mellem grupperne ved førtest for hverken stavning, læsning, opmærksomhed på sproglyde, bogstavkendskab eller ordforråd, vurderet ved p-værdier mellem .545 og .934. De fire deltagergrupper blev derfor anset som værende sammenlignelige ved førtest.

3.5.3 Eftertest
For hver gruppe af deltagere er gennemsnit og standardafvigelser ved eftertest præsenteret i Tabel 3.4. Ved eftertest har kontrolgrupperne hen til de store forskelle mellem de ene ekstreme score i målet af læsescoren og samme statistiske test, ville jeg gerne lave samme analyse på alle mål til trods for tilstedevarsel af en ekstrem score i målet af læsning og opmærksomhed på sproglyde.

Da sammenligningen af fremgang på tværs af de forskellige mål er mere intuitiv med den ikke-transformerede score og samme statistiske test, ville jeg gerne lave samme analyse på alle mål til trods for tilstedevarsel af den ene ekstreme score i målet af læsning og opmærksomhed på sproglyde.

For opmærksomhed på sproglyde, som synteseefærdighed (”Forlyd-rim”), var scoren i de fire grupper i gennemsnit ens, dog numerisk højest score i IT-støtte (se Tabel 3.4). Målet af genkendelse af sproglyde (”Konsonanter”), havde også numerisk højest score i IT-støtte og dernæst meget sammenligneligt i de resterende grupper (se Tabel 3.4). Ordforrådsmønsteret var sammenligneligt med førtest (se Tabel 3.4).

3.5.3.1 Før- til eftertest sammenligninger
For at få et overblik over, om børnene i de enkelte deltagergrupper viser fremgang fra før- til eftertest i færdighederne stavning, læsning, opmærksomhed på sproglyde og bogstavkendskab, så sammenlignes gennemsnit for gentagne mål for disse færdigheder (se Tabel 3.4). Det gentagne stavemål indeholder både trænede og utrænede ord, som er skrevet ved før- og eftertest.

Fra før- til eftertest er der særligt fremgang for stavning og læsning, bogstavkendskab men også for opmærksomhed på sproglyde (”Forlyd-rim”). For opmærksomhed på sproglyd (”Konsonanter”) er forskellen mellem før- og eftertest minimal, på nær for IT-støtte, der har en lille fremgang.

- Læsescoren. Da kontrolgruppen havde ét barn med ekstrem høj fremgang.
- Opmærksomhed på sproglyd (”Konsonanter”). Da direkte læserstøtte havde ét barn med ekstrem høj fremgang.

Da sammenligningen af fremgang på tværs af de forskellige mål er mere intuitiv med den ikke-transformerede score og samme statistiske test, ville jeg gerne lave samme analyse på alle mål til trods for tilstedevarsel af den ene ekstreme score i målet af læsning og opmærksomhed på sproglyde.
("Konsonanter"). For at vurdere disse datapunkters indflydelse blev analysen lavet både med og uden disse. Resultatet for analyserne var det samme, hvorfor effektstørrelser og p-værdier for den fulde stikprøve rapporteres for alle mål i Tabel 3.5.

Tabel 3.5
effektstørrelsen for de parrede forskelle mellem før- og eftertest for kontrolgruppen (KG), indirekte lærerstøtte (IL), IT-støtte (IT) og direkte lærerstøtte (DL).

<table>
<thead>
<tr>
<th>Gentagne mål</th>
<th>KG</th>
<th>IL</th>
<th>IT</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavning. FA</td>
<td>0,36</td>
<td>0,98**</td>
<td>1,22***</td>
<td>2,21***</td>
</tr>
<tr>
<td>Stavning. OA</td>
<td>0,54*</td>
<td>0,88***</td>
<td>1,14***</td>
<td>2,08***</td>
</tr>
<tr>
<td>Læsning. FA</td>
<td>0,45</td>
<td>0,80**</td>
<td>0,78**</td>
<td>1,00***</td>
</tr>
<tr>
<td>Bogstavlyd</td>
<td>0,30</td>
<td>0,53*</td>
<td>0,96**</td>
<td>0,90***</td>
</tr>
<tr>
<td>OPS = Konsonanter</td>
<td>0,26</td>
<td>0,42</td>
<td>0,72**</td>
<td>0,27</td>
</tr>
<tr>
<td>OPS = Forlyd og rimdel</td>
<td>0,81**</td>
<td>0,59*</td>
<td>0,79**</td>
<td>0,88***</td>
</tr>
</tbody>
</table>

Note. FA = fonologisk afstandsscore, OA=ortografisk afstandsscore, OPS=opmærksomhed på sproglyd, Fejlscore. Minimumsscore er den bedste mulige score.

Disse analyser viste (se Tabel 3.5) store (d ≥0,88) forskellen mellem før- og eftertest i de eksperimentelle grupper for begge stavescore og store eller moderat-store forskelle for læsning (d ≥0,78). For bogstavlyd var fremgangen i direkte lærerstøtte og IT-støtte stor (d ≥0,90), men i indirekte lærerstøtte kun moderat (d =0,53). For børnenes evne til at genkende forlyde ("Konsonanter"), var alle fremgange små (d ≤0,42) på nær fremgangen i IT-støtte, som var moderat-stor (d =0,72). For børnenes synteseefærdighed ("Forlyd-rim"), var fremgangen i direkte lærerstøtte og IT-støtte stor (d ≥0,79), men for indirekte lærerstøtte kun moderat (d =0,59).

For kontrolgruppen var alle fremgange på nær to små (d ≤0,45). Børnene i denne gruppe havde moderat fremgang i deres ortografiske stavescore og stor i deres synteseefærdighed.

Alle moderate fremgangen var signifikante. For de eksperimentelle grupper betød det, at der var signifikante fremgange fra før- til eftertest for alle mål, på nær for direkte og indirekte støtte for børnenes evne til at genkende forlyd ("Konsonanter"). For kontrolgruppen betød det, at der kun var signifikante fremgange fra før- til eftertest på to mål.

Overordnet set var særligt de eksperimentelle grupper gået frem fra før- til eftertest. Om forskellene i fremgang mellem grupper er statistisk signifikante belyses i det efterfølgende.

3.5.3.1.1 Hvad svarer fremgang i stave- og læsemålene til?

Da både scoringsmetoden for stavning og for læsning er nye i en dansk kontekst kan betydningen af en fremgang i fx den fonologiske stavescore fra 27,45 ved førtest til 15,08 ved eftertest være svær at forholde sig til. For at imødekomme dette vil jeg inden analyserne, der sammenligner udbyttet af undervisningen på tværs af deltagergrupper, konkretisere disse fremgange med tre eksempler: et for den fonologiske og et for den ortografiske afstandsscore for stavning og et for den fonologiske afstandsscore for læsning, se Figur 3.22.

Eksemplerne er udvalgt, så forskellen i scoren mellem før- og eftertest svarer til den maksimale fremgang for hver af de tre mål i Tabel 3.5. Som det fremgår af eksemplene, hvor forskellen mellem før- og eftertest

svarer til henholdsvis 12,20; 11,80 og 34,0 point, kan en sådan fremgang i score ses tydeligt i antallet af relevante bogstaver i børnenes stavemåder og for læsning som en udvikling fra alene at læse op, ved at tildele grafemerne relevante sproglyde, til også at danne syntese af relevante sproglyde i enkelte ord.

Figur 3.22
Før- og eftertest stavning og læsning for tre elever med gennemsnitlig\(^{c}\) fremgang i stavning (fonologisk afstandsscore), stavning (ortografisk afstandsscore) og læsning (fonologisk afstandsscore).

<table>
<thead>
<tr>
<th>Mål</th>
<th>Ord i staveprøven</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stav.FA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>GL</td>
</tr>
<tr>
<td>E</td>
<td>ASA</td>
<td>AS</td>
</tr>
<tr>
<td>Stav.OA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>BS</td>
<td>GE</td>
</tr>
<tr>
<td>E</td>
<td>BAIS</td>
<td>KLS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Læs.FA</th>
<th>Ord i læsegrøvven</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>MJL(^{a})</td>
<td>MEL(^{b})</td>
</tr>
<tr>
<td>E</td>
<td>[MJL](^{2})</td>
<td>MEL (^{b})</td>
</tr>
</tbody>
</table>

Note. Stav=stavning, Læs=læsning, FA=fonologisk afstandsscore, OA=ortografisk afstandsscore, F=førtest, E=eftertest, Total=samlet score.
\(^{a}\)store bogstaver illustrerer, at barnet læste ved at tildele bogstaverne de angivne sproglyde.
\(^{b}\)["] angav, at barnet dannede syntese af de angivne sproglyde.
\(^{c}\)Gennemsnitsscoren for deltagergruppen med numerisk højest gennemsnit (se Tabel 3.5)

Eksemplet i Figur 3.22 har til formål at illustrere, hvad en fremgang med en scoringsmetoden, der er ny i en dansk sammenhæng, svarer til i barnets stavning og læsning. På den baggrund er det nemmere at forstå betydningen af forskelle mellem de fire deltagergruppe i studiet.

3.5.3.2 Sammenligning af deltagergruppernes gennemsnit

3.5.3.2.1 Stavning
Studie 1 havde for stavning den hypotese, at børn, der fik direkte støtte af en voksen, ville udvikle deres stavning mere end grupper, der ikke børnestavede og mere end børn, der børnestaver med indirekte støtte. Børn, der stavede med indirekte støtte vil ikke adskille sig fra kontrolgruppen. For børnene, der børnestavede med IT-støtte, var hypotesen, at udbyttet af IT-støtte ikke ville adskille sig fra den direkte lærerstøtte. Dette vurderes dels ved, at begge grupper adskiller sig signifikant fra kontrolgruppen, men også ved, at grupperne ikke adskiller sig signifikant fra hinanden. Gennem en række analyser bekræftes eller afkræftes hypoteserne for stavning med det formål at besvare forskningsspørgsmål 1 og 2 i Studie 1 for stavning (se afsnit 3.3).

Endvidere belyses forskningsspørgsmål 3, som kun gælder for stavning, ved at analyserne af forskelle i deltagerernes gennemsnit ved eftertest gennemføres med både den fonologiske og ortografiske score. Som tidligere beskrevet (se afsnit 3.3) er det hypotesen, at børnene, som får indirekte støtte, ikke udvikler deres stavning mere end kontrolgruppen, hvorfor den fonologiske kvalitet i børnenes stavning ikke burde adskille sig fra kontrolgruppen. For børnene i IT-støtte er forventningen netop, at de udvikler den fonologiske kvalitet af stavningen, hvorfor denne gruppe ved eftertest adskiller sig fra kontrolgruppen på den fonologiske score. For direkte støtte er forventningen, at også den ortografiske kvalitet af børnenes stavning er bedre end kontrolgruppen.

3.5.3.2.1.1 Samlet eftertest stavescore
Den første ANCOVA-analyse besvarer flere spørgsmål. Dels besvarer den, om der er en hovedeffekt af deltagergruppe for den samlede stavescore ved eftertest. Samtidig belyser den, om der er en hovedeffekt af trænede over for utrænede ord.
For at forstå hovedeffekten af trænede over for utrænede ord, minder jeg kort om, hvordan stavetesten er bygget op (se afsnit 3.4.3.1.1). Ved eftertest består stavetesten af ni ord, børnene har skrevet i undervisningen, og ni nye ord, som ikke er trænede. Dette design gør det muligt at belyse, om der er en overføringseffekt til nye ord af det, børnene har lært i undervisningen. Det vil tyde på, at de forventede forskelle mellem deltagergupper ikke alene optræder ved ord, børnene har skrevet i undervisningen, men også, når børnene staver nye ord.

Med forskningsspørgsmål 3 i sigte (se afsnit 3.3) blev ANCOVA-analysen lavet med både den fonologiske og ortografiske afstandsscore. I nedenstående gennemgang præsenteres begge analyser sideløbende. Jeg præsenterer først evidens for om analysens antagelser blev overholdt og dernæst resultater af analysen.

Der var et lineært forhold mellem før- og eftertest-stavning af både trænede og utrænede ord, uanset scoringsmetode. Dette blev vurderet ud fra visuel inspektion af spredningsdiagrammet for den gentagne variabel og kovariaten for hver deltagerguppe. Der var homogenitet for regressionshældning, da interaktionen mellem deltagergupperne og kovariaten stavning ved førtest ikke var statistisk signifikant, hverken når scoringsmetoden var fonologisk afstand3 F(3, 72) = 0,091, p = 0,965, eller når den var ortografisk afstand4 F(3, 72) = 0,063, p = 0,979. Da standardiserede residualer for kontrolgruppen, indirekte lærerstøtte og for IT-støtte var normalfordelt, vurderet ved Shapiro-Wilks test, p > 0,05. For direkte lærerstøtte var residualerne ikke normalfordelt, da Shapiro-Wilks test havde p < 0,05. Da ANCOVA er robust over for små overrørlædelser af antagelsen om normalitet, gennemførtes analysen med ikke-transformerede variable (Laerd statistics, 2017). Der var varianshomogenitet vurderet ved både visuel inspektion af spredningsdiagrammet for de standardiserede residualers sammenhæng med forudsagte værdier og Levenes test af homogenitet af varianser, p < 0,05. Dette gjaldt uanset scoringsmetode og for både trænede og utrænede ord. Der var homogenitet af kovarians matrix, vurderet ved Box's M, p > 0,05, uanset scoringsmetode. Der var to ekstreme datapunkter med standardiserede residualer på 3,06 og 3,08, men da disse var meget tæt på den normale øvre grænse for ekstreme datapunkter på ± 3 standardafvigelses (Laerd statistics, 2017), blev datapunkterne holdt i analysen. De ekstreme datapunkter var kun til stede i analysen med den ortografiske afstandsscore og ikke for den med den fonologiske.

3 I den resterende gennemgang af resultater markeres fonologisk afstandsscore (FA)
4 I den resterende gennemgang af resultater markeres ortografisk afstandsscore (OA)
I dette afsnit præsenteres resultatet af analysen gentagen ANCOVA. Efter justering for førtest-stavning var der uanset scoringsmetode ikke en signifikant hovedeffekt af forskellen mellem trænede og utrænede ord:

- $F(1, 75) = 0,022, p = .883$, partial $\eta^2 < .001$ (meget lille) (FA)
- $F(1, 75) = 1,438, p = .234$, partial $\eta^2 = .019$ (lille) (OA)

Interaktionen mellem deltagergruppe og stavescoren for trænede og utrænede ord var heller ikke signifikant:

- $F(3, 75) = 0,087, p = .952$, partial $\eta^2 = .034$ (FA)
- $F(3, 75) = 1,435, p = .234$, partial $\eta^2 = .041$ (OA)

Der var en hovedeffekt af deltagergruppe:

- $F(3, 75) = 7,513, p < .001$, partial $\eta^2 = .213$ (stor) (FA)
- $F(3, 75) = 6,092, p = .001$, partial $\eta^2 = .196$ (stor) (OA)

Posthoc-test med Bonferroni-justering viste, at kontrolgruppens gennemsnit $M_{justeret} = 22,28$ og $M_{justeret} = 24,11$ var signifikant højere end direkte lærerstøttes:

- $M_{justeret} = 13,07$, $M_{forskel} = 9,21$, $p < .001$, 95% CI [3,76-14,67], $d = 0,79$ (moderat-stor) (FA)
- $M_{justeret} = 16,05$, $M_{forskel} = 8,06$, $p < .001$, 95% CI [2,84-13,28], $d = 0,76$ (moderat-stor) (OA)

Det samme var tilfældet for forskellen mellem kontrolgrupper og IT-støtte:

- $M_{justeret} = 15,72$, $M_{forskel} = 6,56$, $p = .010$, 95% CI [1,13-11,99], $d = 0,52$ (moderat) (FA)
- $M_{justeret} = 18,78$, $M_{forskel} = 5,33$, $p = .040$, 95% CI [0,14-10,54], $d = 0,47$ (lille-moderat) (OA)

Forskellen mellem kontrolgrupper og indirekte støtte var signifikant ved den fonologiske afstandsscore, men ikke signifikant ved den ortografiske afstandsscore:

- $M_{justeret} = 16,06$, $M_{forskel} = 6,22$, $p = .017$, 95% CI [0,77-11,68], $d = 0,47$ (lille-moderat) (FA)
- $M_{justeret} = 19,07$, $M_{forskel} = 5,04$, $p = .064$, 95% CI [-0,18-10,26], $d = 0,42$ (lille-moderat) (OA)

Ingen andre forskelle var signifikante, vurderet ved $p > .719$ for alle andre parvise sammenligninger.

Figur 3.23
Resultatet af gentagen ANCOVA for stavning, fonologisk afstandsscore, med fejllinje for at angive præcisionen af estimatet for det justerede gennemsnit.

![Diagram](image)

Figur 3.23. Justerede gennemsnit for stavning med fonologisk afstandsscore ved eftertest for hver deltagergruppe for trænede og utrænede ord. Fejllinjen repræsenterer 95 % konfidensintervaller. Kovariaten i modellen er evalueret ved værdien 26,08 for stavning ved førtest fonologisk afstandsscore.

Note. n=20 for alle deltagergrupper.

Figur 3.24
Resultatet af gentagen ANCOVA for stavning, ortografisk afstandsscore, med fejllinje for at angive præcisionen af estimatet for det justerede gennemsnit.

![Diagram](image)

Note. n=20 for alle deltagergrupper.
3.5.3.2.1.2 Stavning af utrænede ord

For at bestemme effekten af kontrolgruppe, direkte lærerstøtte, indirekte lærerstøtte og IT-støtte på eftertest stavning af utrænede ord, målt som fonologisk afstand henholdsvis ortografisk afstand, når er kontrolleret for førtestscoren, blev der foretaget en-vejs ANCOVA-analysen.

Uanset scoringsmetode viste analysen, at der, efter justering for førtest-stavning, var en signifikant effekt af deltagergruppe for eftertest stavning af utrænede ord:

- F(3, 75) =6,36, p =.001, partial η2 =,203 (stør) (FA)
- F(3, 75) =4,91, p =.004, partial η2 =,164 (stør) (OA)

Posthoc-test med Bonferroni-justering for multiple sammenligninger viste, at børnene i kontrolgrupper scorede signifikant højere end børnene i direkte lærerstøtte:

- M_forsk =9,05, 95% CI [3,20-14,90], p <.001, d =0,78 (moderat-stør) (FA)
- M_forsk =7,82, 95% CI [2,21-13,44], p =.002, d =0,74 (moderat-stør) (OA)

Det samme var for den fonologiske score tilfældet for forskellen mellem IT-støtte og kontrolgrupper, mens denne forskel ved den ortografiske score ikke var signifikant:

- M_forsk =6,78, 95% CI [0,96-12,60], p =.014, d =,53 (moderat) (FA)
- M_forsk =5,07, 95% CI [-0,53-10,66], p =.099, d =0,44 (lille-moderat) (OA)

Forskellen mellem indirekte lærerstøtte og kontrolgrupper var ikke signifikant:

- M_forsk =5,54, 95% CI [-0,31-11,39], p =.074, d =0,43 (lille-moderat) (FA)
- M_forsk =4,06, 95% CI [-1,55-9,68], p =.322, d =0,34 (lille) (OA)

Forskellen mellem indirekte og direkte lærerstøtte var ikke signifikant:

- p =.604, d =0,32 (lille) (FA)
p = 0,435, d = 0,37 (lille) (OA)

Det samme gjaldt forskellen mellem IT-støtte og direkte lærerstøtte:

- p = 1,0, d = 0,21 (lille) (FA)
- p = 1,0, d = 0,28 (lille) (OA)

Den signifikante hovedeffekt af deltagergruppe fremgår af Tabel 3.6 for den fonologiske score og Tabel 3.7 for den ortografiske score af forskellen i deltagergruppernes justerede gennemsnit. Posthoc-testen viste ved den fonologiske score, at det var forskellen mellem kontrolgruppen og direkte- henholdvis IT-støtte, der var signifikant. Dette kan aflæses i Tabel 3.6 dels ved sammenligning af gruppernes justerede gennemsnit, dels ved 95% konfidensintervallet for de justerede gennemsnit, som ikke overlappede mellem kontrolgruppen og direkte- henholdsvis IT-støtte. For den ortografiske score viste posthoc-testen, at det kun var forskellen mellem kontrolgruppen og direkte-støtte, der var signifikant. Dette kan aflæses i Tabel 3.7 dels ved sammenligning af gruppernes justerede gennemsnit, dels ved 95% konfidensintervallet for de justerede gennemsnit, som ikke overlappede mellem kontrolgruppen og direkte-støtte.

Tabel 3.6
Justerede og ikke-justerede gennemsnit og spredning for eftertest stavning af utrænede ord med fonologisk afstandsscore (FA) og førtest-stavning med FA som kovariat.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SE</td>
<td>95% CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>20,71</td>
<td>13,54</td>
<td>22,31</td>
<td>1,52</td>
<td>19,28, 25,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>17,98</td>
<td>12,27</td>
<td>16,77</td>
<td>1,52</td>
<td>13,74, 19,80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>14,70</td>
<td>12,11</td>
<td>15,54</td>
<td>1,52</td>
<td>12,51, 18,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>14,50</td>
<td>9,31</td>
<td>13,27</td>
<td>1,52</td>
<td>10,24, 16,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. n=20 for alle deltagergrupper, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG= kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensinterval

aKovariater, som optræder i modellen, er evalueret ved følgende værdi: fonologisk afstandsscore ved førtest=26,08.

Tabel 3.7
Justerede og ikke-justerede gennemsnit og spredning for eftertest stavning af utrænede ord med ortografisk afstandsscore (OA) og førtest-stavning med OA som kovariat.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SE</td>
<td>95% CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>23,32</td>
<td>12,14</td>
<td>24,73</td>
<td>1,46</td>
<td>21,46, 27,29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>21,29</td>
<td>11,70</td>
<td>20,31</td>
<td>1,46</td>
<td>17,40, 23,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>18,47</td>
<td>10,79</td>
<td>19,31</td>
<td>1,46</td>
<td>16,40, 22,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>17,46</td>
<td>8,61</td>
<td>16,55</td>
<td>1,46</td>
<td>13,64, 19,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. n=20 for alle deltagergrupper, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG= kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensinterval

aKovariater, som optræder i modellen, er evalueret ved følgende værdi: ortografisk afstandsscore førtest=27,79.

Når børnenes stavning af utrænede ord vurderes, er børnene i indirekte lærerstøtte uanset scoringsmetode ikke bedre stavere end kontrolgruppen. Børnene i IT-støtte har alene bedre kvalitet end kontrolgruppen i deres fonologiske stavning. Børnene i direkte støtte har som de enste bedre kvalitet end kontrolgruppen i både fonologiske, men også ortografiske aspekter af stavning.
Fordi den ortografiske score i denne analyse både vurderer børnenes stavning af ord med simple og komplekse fonem-grafem-forbindelser (se afsnit 3.4.3.1.1), er det ikke muligt at vurdere, om ordene med simple fonem-grafem-forbindelser mindsker den egentlige fordel til direkte støtte ved ortografiske aspekter af stavning. Dette forklares måske nemmest med et eksempel. I ordet *mel*, som alene har simple fonem-grafem-forbindelser, vil både fonologisk og ortografisk score tildele nul point for den lydrette stavning MEL. I ordet *kys*, som også har en komplek fonem-grafem-forbindelse, vil alene den fonologiske score tildes nul point for den lydrette stavning KØS, mens den ortografiske score vil være større end nul. I en stavetest med ord med både simple- og komplekse fonem-grafem-forbindelser, er det derfor muligt, at en effekt, der alene knytter sig til de komplekse forbindelser undervurderes.

3.5.3.2.1.3 Simple eller komplekse fonem-grafem-forbindelser

Dette spørgsmål kan på grund af stavetestens design, som en test med både ord med simple og komplekse fonem-grafem-forbindelser, belyses yderligere i en gentagen ANCOVA med utrænede ord med simple henhoidsvis komplekse ord som gentaget mål, deltagergruppe som uafhængig variabel og førtest-stavning som kovariat. Da interessen er i forskellen mellem simple og komplekse stavemåder, gennemføres denne analyse kun med den ortografiske afstandsscore.

Denne analyse var ikke planlagt og indlagt i designet af Studie 1 på forhånd, hvorfor den er eksplorativ af karakter. Eventuelle fund må derfor gentages i et studie designet med det formål at teste denne forskel, for at de kan betegnes som egentlig evidens.

Et af problemerne i dette studie er, at der ikke er mange eller lige mange items, som repræsenterer utrænede ord med simple henhoidsvis komplekse fonem-grafem-forbindelser. Der er fem items med simple og fire med komplekse. Et andet problem er det lave antal af items, som gør, at det er lidt en tilnigelse at behandle scoren som et skala-mål.

Jeg vurderede dog, at analysen, disse begrænsninger til trods, kunne bidrage til at belyse, om fordelen til gruppen med direkte lærerstøtte er særlig fremtrædende på utrænede ord med komplekse fonem-grafem-forbindelser.

Først blev analysens antagelser gennemgået. Alle antagelser var overholdt, på nært at der var et ekstremligt datapunkt med standardiseret residual på 3,36. Dette var rimelig tæt på den normale grænse på ±3 standardafvigelser og ikke kunne identificeres som en ikke gyldig score, ville jeg ikke fjerne det fra stikprøven. For at vurdere, om datapunktet skævred analysens resultat, gennemførte jeg den samme analyse blot uden dette datapunkt. Resultaterne af de to analyser med og uden datapunktet var i forhold til signifikansniveau ens. På denne baggrund vurderes det, at analysen kan gennemføres med det fulde datasets.

I dette afsnit præsenteres resultatet af gentagen ANCOVA- analyse for det fulde dataset. Efter justering for førtest-stavning, var der en signifikant hovedeffekt af forskellen mellem utrænede ord med simple henhoidsvis komplekse fonem-grafem-forbindelser:

- F(1, 75) = 0,022, p < .001, partial η² < .308 (stor)

Interaktionen mellem deltagergruppe og stavescoren for simple henhoidsvis komplekse fonem-grafem-forbindelser i utrænede ord var signifikant:

- F(3, 75) = 0,419, p = .008, partial η² = .144 (stor)

Der var en hovedeffekt af deltagergruppe:
• $F(3, 75) = 4.906, p = .004$, partial $\eta^2 = .164$ (stor)

Figur 3.25
Resultatet af gentagen ANCOVA for stavning af utrænede ord, ortografisk afstandsscore, med fejllinje for at angive præcisionen af estimatet for det justerede gennemsnit.

![Figur 3.25](image)

Note. n=20 for alle deltagergrupper.

Interaktionseffekten ses i Figur 3.25 som den tendens, at for ord med simple forbindelser minder gennemsnitscoren for de tre eksperimentelle grupper om hinanden, mens gennemsnittet for kontrolgruppen adskiller sig, og for ord med komplekse forbindelser minder kontrolgruppen, indirekte lærerstøtte og IT-støtte om hinanden, mens børnene, der skriver med direkte lærerstøtte, adskiller sig som de børn med numerisk bedst stavning. Dette indikerer, at børnene i alle eksperimentelle grupper bliver bedre stavere i sammenligning med kontrolgruppen for ord med simple fonem-grafem-forbindelser, mens det kun er børnene i direkte lærerstøtte, der udvikler deres stavning i sammenligning med kontrolgruppen for ord med komplekse fonem-grafem-forbindelse.
Læsning. Fonologisk afstand

Læsning ved før- og eftertest blev målt med en fonologisk afstandsscore (se afsnit 3.4.3.1.2). En en-vejs ANCOVA med førtest-læsning som kovariat og eftertest læsning som afhængig variable blev foretaget for at undersøge forskelle imellem grupper i børnenes læsning ved eftertest.

Sénéchal (2017) argumenterer i sin Nested Skills Model (se afsnit 2.2.3) for, at børnestavning er væsentlig for børnenes tilegnelse af læsning. En logisk følge af denne model er at forvente mest fremgang i læsning i de grupper, hvor jeg også forventer mest fremgang i stavning. Fordi hypotesen om sammenhæng var den samme for læsning som for stavning var det meningsfuldt at undersøge forskelle i mellem grupper i børnenes læsning ved eftertest.

Sénéchal (2017) argumenterer i sin Nested Skills Model (se afsnit 2.2.3) for, at børnestavning er væsentlig for børnenes tilegnelse af læsning. En logisk følge af denne model er at forvente mest fremgang i læsning i de grupper, hvor jeg også forventer mest fremgang i stavning. Fordi hypotesen om sammenhæng var den samme for læsning som for stavning var det meningsfuldt at undersøge forskelle i mellem grupper i børnenes læsning ved eftertest.

Som for stavning undersøges denne hypotese ved posthoc-analyse med Bonferroni-justering for multiple sammenligninger. Analysen blev lavet på vendte og kvadratrodstransformerede score, da fordelingen var venstre-skævet (Field, 2013).

Transformationen blev lavet efter samme princip som for læsning ved førtest (se Ligning 1).

Først blev en-vejs ANCOVA-analyses antagelser undersøgt for den transformerede score, og ingen af disse antagelser var brudt. Resultatet af analysen var som følger. Efter justering for førtest-læsning score som fonologisk afstand var der en significiant forskel mellem deltagergrupperne i samme mål ved eftertest:

- $F(3, 75) = 3,349, p = 0,023$, partial $\eta^2 = 0,118$ (moderat)

Posthoc-test med Bonferroni-justering for multiple sammenligninger viste significante forskelle mellem indirekte lærerstøtte og kontrolgruppen

- $M_{forsk} = -2,10, 95\% CI [-4,16;(-0,05)], p = 0,041, d = 0,66$ (moderat)

Melleen direkte lærerstøtte og kontrolgruppen var forskellen ikke signifikant (marginalt):

- $M_{forsk} = -1,91, 95\% CI [-3,94;0,12], p = 0,077, d = 0,60$ (moderat)

Forskellen mellem kontrolgruppen og IT-støtte var ikke signifikant

- $M_{forsk} = -1,81, 95\% CI [-3,83;0,22], p = 0,108, d = 0,51$ (moderat)

Forskellene mellem direkte lærerstøtte og de resterende eksperimentelle grupper var ikke signifikante.

Den signifikante hovedeffekt af deltagergruppe fremgår af (Tabel 3.8) ved forskellen i deltagergruppernes justerede gennemsnit. Af disse fremgår det, at den store forskel imellem deltagergrupper er den mellem kontrolgruppen og de tre eksperimentelle grupper. Posthoc-testen viste dog, at det alene var forskellen mellem kontrolgruppen og indirekte, der var signifikant. Dette kan aflæses i Tabel 3.8 ved sammenligning af gruppernes justerede gennemsnit og ved 95\% konfidenintservallet for de justerede gennemsnit, som ikke overlappede mellem kontrolgruppen og indirekte-støtte. Af Tabel 3.8 fremgår det også af de justerede gennemsnit og konfidenintservallerne, at forskellene mellem kontrolgruppen og direkte- henholdsvis IT-støtte ikke er langt fra at være signifikante. Effektstørrelserne for forskellen mellem kontrolgruppen og de eksperimentelle grupper er da også alle moderate ($d = 0,51-0,66$).
Tabel 3.8
Justerede og ikke-justerede gennemsnit og spredning for eftertest-læsning scoret som fonologisk afstand (FA) og samme mål ved førtest som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>KG</td>
<td>5,15</td>
<td>3,29</td>
</tr>
<tr>
<td>IL</td>
<td>5,98</td>
<td>3,09</td>
</tr>
<tr>
<td>IT</td>
<td>6,32</td>
<td>3,73</td>
</tr>
<tr>
<td>DL</td>
<td>6,15</td>
<td>3,05</td>
</tr>
</tbody>
</table>

Note. n=20 for alle deltagergrupper, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG=kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensinterval.

4 Kovariater, som optræder i modellen, er evalueret ved følgende værdi: læsning fonologisk afstand førtest (vendt og kvadratrodstransformeret) =4,38.

3.5.3.2.3 Forudsætninger

For bogstavkendskab var hypotesen som for stavning og læsning. For opmærksomhed på sproglyd forventede jeg ikke forskel mellem de eksperimentelle grupper og kontrolgruppen.

3.5.3.2.3.1 Bogstavkendskab

For at bestemme effekten af kontrolgruppe, direkte lærerstøtte, IT-støtte og indirekte lærerstøtte ved eftertest på børnenes viden om bogstavernes lyde, når der er kontrolleret for førtestscoren, blev en ANCOVA-analyse gennemført. Analysen blev foretaget på en vendt og logtransformeret score (se Ligning 2), da fordelingen var venstreskævt (Field, 2013).

Ligning 2
Formel for transformationen af eftertest bogstavkendskab.

$$BL_{trans} = LG10((Maks(BL)+1) - BL)$$

Note. BLtrans=transformeret score for BL, BL=score for variablen bogstavlyd, LG10=logtransformering, Maks=højeste score.

Først blev analysens antagelser undersøgt for den transformerede score, og ingen af disse antagelser var brudt. Analysen viste, at der efter justering for førtest-viden om bogstavernes lyde ikke var en signifikant forskel mellem grupperne i samme mål ved eftertest:

- $F(3, 74) = 1,382, p = .255$, partial $\eta^2 = .053$ (lille)

Posthoc-analyse med Bonferroni-justering for multiple sammenligninger viste ingen signifikante forskelle mellem kontrolgruppen og de eksperimentelle grupper eller mellem direkte og indirekte lærerstøtte eller direkte og IT-støtte, vurderet ved $p \geq 377$. Dog havde forskellen mellem kontrolgruppen og direkte lærerstøtte numerisk største effektstørrelse $d = 0,42$ (lille) og lavest p-værdi $M_{forskel} = 0,157$, 95% CI [-0,07-0,38], $p = 377$. For forskellen mellem kontrolgruppen og IT-støtte var $M_{forskel} = 0,134$, 95% CI [-0,10-0,36], $p = 703$ d = 0,37 (lille). For alle andre forskelle var effektstørrelserne mindre og p-værdierne større.

Det var ingen signifikant hovedeffekt af deltagerguppe, og forskellene mellem grupper var heller ikke signifikante. De justerede gennemsnit (Tabel 3.9) viste en numerisk fordel til direkte lærerstøtte, efterfulgt af IT-støtte, dernæst indirekte lærerstøtte og sidst kontrolgruppen. Den største forskel var mellem kontrolgruppen og direkte lærerstøtte henholdsvis IT-støtte. Tendensen i de justerede gennemsnit er for børnenes kendskab til bogstavlyd helt sammenligneligt med den, der ses for stavning (se afsnit 3.5.3.2.1).
Tabel 3.9
Justerede og ikke-justerede gennemsnit og spredning for eftertest-viden om bogstavlyd og samme mål ved førtest som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>KG</td>
<td>0,56</td>
<td>0,40</td>
</tr>
<tr>
<td>IL</td>
<td>0,48</td>
<td>0,44</td>
</tr>
<tr>
<td>IT<sub>b</sub></td>
<td>0,41</td>
<td>0,32</td>
</tr>
<tr>
<td>DL</td>
<td>0,37</td>
<td>0,35</td>
</tr>
</tbody>
</table>

*Note. n=20 for alle deltagergrupper med mindre andet er markeret, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG=kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensintervall

^aKovariater, som optræder i modellen, er evalueret ved følgende værdi: viden om bogstavlyd ved førtest (vendt log10) =0,63.

3.5.3.2.3.2 Opfølgning på sproglyd

Samme procedure blev fulgt for at bestemme effekten af **kontrolgruppe**, **direkte** lærerstøtte, **IT-støtte** og **indirekte** lærerstøtte ved eftertest henholdsvis for børnenes evne til at danne syntese (**"Forlyd-rim"**) og genkende forlyd (**"Konsonanter"**), når der er kontrolleret for førtestscoren i samme mål.

Først blev analyseres antagelser undersøgt. Med én undtagelse var der hverken for børnenes syntese- eller genkendelsesfærdighed brud på analyseres antagelser. For børnenes genkendelse (**"Konsonanter"**) var residualerne ikke normalfordelt for **direkte** lærerstøtte vurderet ved Shapirho-Wikls, p =.048. Da ANCOVA er robust over for små overtrædelser af antagelsen om normalitet ved ens gruppestørrelse, blev analysen gennemført med ikke-transformerede variable (Laerd statistics, 2017)

Uanset hvilken af de to typer opfølgning på sproglyd, analysen blev gennemført for, viste den, at der, efter justering for førtest opfølgning på sproglyd, ikke var en signifikant forskel mellem grupperne ved eftertest:

- F(3, 75) =0,432, p =.731, partial η2 =.017 (lille) (**"Forlyd-rim"**)
- F(3, 74) =1,202, p =.315, partial η2 =.046 (lille) (**"Konsonanter"**)

Posthoc-analyse med Bonferroni-justering for multiple sammenligninger viste ingen signifikante forskelle mellem **kontrolgrupper** og de **eksperimentelle** grupper eller mellem **direkte** og **indirekte** lærerstøtte eller **direkte** og IT-støtte.

For børnenes syntesefærdighed var forskellene mellem de fire deltagergrupper for de justerede gennemsnit meget små (se Tabel 3.10), hvilket stemte overens med små effektstørrelser for forskellene (d =0,00-0,25). Tendensen i de justerede gennemsnit var en fordel til **direkte** over **indirekte** lærerstøtte og **direkte** lærerstøtte og IT-støtte som næsten ens. Da forskellene var meget små og ikke statistisk signifikante, finder dette studie dog ikke evidens for, at undervisningen skaber forskelle mellem grupper i børnenes evne til at danne syntese.

For børnernes evne til at genkende sproglyde i forlyd (**"Konsonanter"**) var forskellene i de justerede gennemsnit i Tabel 3.11 mellem IT-støtte og **direkte** lærerstøtte henholdsvis **kontrolgruppen** numerisk større end forskellen mellem **direkte**- og **indirekte** støtte og forskellen mellem disse og **kontrolgrupper**. Forskellen mellem IT-støtte og **kontrolgruppen** henholdsvis **direkte** støtte var små (d =0,40-0,44). For forskellene mellem de resterende grupper var alle effektstørrelser meget små (d <0,05). Der var, vurderet ved effektstørrelser og gennemsnit, en tendens til en fordel til børnene, som fik IT-støtte, men forskellene mellem grupper var dog ikke store nok til at være signifikante.
Tabel 3.10
Justerede og ikke-justerede gennemsnit og spredning for eftertest opmærksomhed på sproglyde, Forlyd-rim, samme mål ved førtest som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SE</td>
</tr>
<tr>
<td>KG</td>
<td>10,90</td>
<td>3,43</td>
<td>11,17</td>
<td>0,63</td>
</tr>
<tr>
<td>IL</td>
<td>10,50</td>
<td>3,27</td>
<td>10,42</td>
<td>0,63</td>
</tr>
<tr>
<td>IT</td>
<td>11,60</td>
<td>3,15</td>
<td>11,33</td>
<td>0,63</td>
</tr>
<tr>
<td>DL</td>
<td>11,10</td>
<td>2,81</td>
<td>11,18</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Note. n=20 for alle deltagergrupper, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG= kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensinterval

*Kovariater, som optræder i modellen, er evalueret ved følgende værdi: opmærksomhed på sproglyd Forlyd - rim førtest=8,53.

Tabel 3.11
Justerede og ikke-justerede gennemsnit og spredning for eftertest opmærksomhed på sproglyde – Konsonanter og samme mål ved førtest som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SE</td>
</tr>
<tr>
<td>KG</td>
<td>6,95</td>
<td>3,19</td>
<td>6,81</td>
<td>0,55</td>
</tr>
<tr>
<td>IL</td>
<td>6,75</td>
<td>3,16</td>
<td>6,91</td>
<td>0,54</td>
</tr>
<tr>
<td>IT</td>
<td>7,90</td>
<td>2,77</td>
<td>8,00</td>
<td>0,54</td>
</tr>
<tr>
<td>DL</td>
<td>6,90</td>
<td>2,79</td>
<td>6,77</td>
<td>0,54</td>
</tr>
</tbody>
</table>

Note. n=20 deltager i hver deltagergruppe med mindre andet er markeret med en note, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG= kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensinterval

*Kovariater, som optræder i modellen, er evalueret ved følgende værdi: opmærksomhed på sproglyd Konsonanter førtest=5,97.

3.5.3.2.4 Ordførråd

For ordførrådet var forventningen, at der ikke ville være en signifikant forskel mellem kontrolgruppen og de eksperimentelle grupper. For at bestemme effekten af deltagergruppe på ordførråd ved eftertest, når der er kontrolleret for førtestscoren, blev endnu en ANCOVA-analyse foretaget.

Først blev analysens antagelser undersøgt. Der var to overtrædelser af analysens antagelser. For IT-støtte og kontrolgruppen var residualerne ikke normalfordelt vurderet ved Shaphiro-Wilks test, p =,047 og p =,019. ANCOVA er dog, som før diskuteret, robust over for små overtrædelser af antagelsen om normalitet ved ens gruppestørrelse, hvorfor analyseret gennemføres med ikke-transformerede variable. Der var ét ekstremitet datapunkt med et standardiseret residual på 3,48 standardafvigelser. Der var ingen grund til at tro, at punktet ikke var et reelt datapunkt, hvorfor det var meningsfuldt at bibeholde datapunktet. Da datapunktet adskilte sig næsten en halv standardafvigelse fra grænser på ±3, var det dog nødvendigt at undersøge, i hvor høj grad analysen blev påvirket af datapunktets tilstedeværelse. Derfor blev analysen både foretaget med og uden datapunktet. ANCOVA-analysen uden datapunktet havde ikke andre resultater i forhold til sammenligningen af de justerede gennemsnit ved eftertest. På den baggrund besluttede jeg at rapportere ANCOVA-analysen med datapunktet inkluderet.

Efter justering for førtest-ordfoerråd var der ikke en signifikant forskel mellem grupperne i samme mål ved eftertest, F(3, 74) =0,030, p =,.993, partial η2 =.001 (meget lille). Posthoc-test med Bonferroni-justering for multiple sammenligninger viste ingen signifikant forskel mellem kontrolgruppen og eksperimentelle grupper. Resultat blev understøttet af meget små effektstørrelser for forskellene mellem kontrolgruppen
og de eksperimentelle grupper (d = 0,01-0,04). De justerede gennemsnit var i overensstemmelse med effektstørrelserne numerisk næsten ens (M_{justeret} 19,78-19,97) (se Tabel 3.12).

Tabel 3.12
Justerede og ikke-justerede gennemsnit og spredning for eftertest-ordforråd og samme mål ved førtest som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>18,60</td>
<td>5,03</td>
</tr>
<tr>
<td>DL</td>
<td>20,15</td>
<td>4,20</td>
</tr>
<tr>
<td>IL</td>
<td>20,40</td>
<td>5,05</td>
</tr>
<tr>
<td>IT(b)</td>
<td>20,42</td>
<td>4,90</td>
</tr>
</tbody>
</table>

Note. n=20 deltager i hver deltagergruppe med mindre andet er markeret med en note, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG= kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidentsinterval

\(^a\)Kovariater, som optræder i modellen, er evalueret ved følgende værdi: ordforråd=19,00.

\(^b\)n=19.

3.5.3.2.5 Skriv frit

Målet af børnenes frie skrivning skulle belyse, om børneposition med mere direkte støtte, enten i form af direkte lærerstøtte eller IT-støtte, end den børnene i indirekte støtte fik, havde en negativ indvirkning på længden af børnenes tekster. En ANCOVA-analyse blev foretaget med børnenes skrivelyst ved eftertest, opgjort som antallet af bogstaver i en fri skriveopgave, som afhængig variabel, deltagergruppe som uafhængig variabel og børnenes viden om bogstavernes lyd ved førtest som kovariat.

Denne kovariat blev valgt, da antallet af bogstaver ved fri skrivning ikke var et førtest-mål. Analysen blev foretaget på logtransformeret score (Ligning 3), da fordelingen for begge mål var skæv.

Ligning 3
Formel for transformationen af bogstavskænkab ved førtest og antal bogstaver ved fri skrivning ved eftertest.

\(BL_{trans} = LG10(BL+1)\), \(AB_{trans} = LG10(AB+1)\)

Note. BL\(_{trans}\)=transformeret score for BL, BL=score for variablen bogstavlyd, AB\(_{trans}\)=transformeret score for AB, AB=score for variablen antal bogstaver i fri skriveopgave, LG10=logtransformer.

For den transformerede score var alle ANCOVA analysensantagelser overholdt. Efter justering for viden om bogstavernes lyde ved førtest var der ikke en signifikant forskel mellem grupperne i antal bogstaver ved fri skrivning ved eftertest, F(3, 72) =0,270, p =,847, partial η² =,011 (lille). Posthoc-test med Bonferroni-justering viste ingen signifikante forskelle mellem indirekte lærerstøtte og henholdsvis direkte lærerstøtte (d =0,20) og IT-støtte (d =0,16). De justerede gennemsnit (se Tabel 3.13) viste en tendens til en fordel for indirekte lærerstøtte, da disse var numerisk højest i indirekte lærergruppen ogellers numerisk næsten ens i de to andre eksperimentelle grupper og kontrolgruppen (se Tabel 3.13). Forskellen mellem deltagergrupper var dog for små til at være statistisk signifikante. Der er i dette studie ikke evidens for, at nogle former for støtte giver længere tekster end andre.
Tabel 3.13
Justerede og ikke-justerede gennemsnit og spredning for eftertest antal bogstaver ved fri skrivning og viden og fonem-grafem-forbindelser ved før-test som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>KG</td>
<td>1,23</td>
<td>0,25</td>
<td>1,25<sup>a</sup></td>
</tr>
<tr>
<td>DL</td>
<td>1,28</td>
<td>0,28</td>
<td>1,27<sup>a</sup></td>
</tr>
<tr>
<td>IL<sup>b</sup></td>
<td>1,31</td>
<td>0,22</td>
<td>1,32<sup>a</sup></td>
</tr>
<tr>
<td>IT<sup>c</sup></td>
<td>1,30</td>
<td>0,28</td>
<td>1,28<sup>a</sup></td>
</tr>
</tbody>
</table>

^aKovariater, som optræder i modellen, er evalueret ved følgende værdi: viden om fonem-grafem-forbindelser førtest (log₁₀) = 1,19.

^bn=19.

^cn=18.

3.5.3.3 Sammenligning af andelen af elever med fremgang

De overstående ANCOVA-analyser har belyst sammenhængen mellem deltagergrupperne og deres score på mål for stavning, læsning, forudsætningsmål og deres frie skrivning med det formål at besvare forskningsspørgsmålene 1, 2 og 3 (se afsnit 3.3). En anden måde at belyse forskningsspørgsmålene på er ved at se på fremgangen, og om der er forskelle i denne imellem grupperne. Disse analyser laves kun for stavning og læsning. I dette afsnit behandles fremgangen som en kategorivariabel med to kategorier: fremgang og ingen fremgang. Disse kategorier kan visualiseres med spredningsdiagrammer med førtestscoren langs x-aksen og eftertestscoren langs y-aksen og en referencelinje ved y=x+0. Da både stave- og læsescoren er fejlscore, vil punkter under den rette linje repræsentere børn med fremgang, mens punkter over eller på den rette linje vil repræsentere børn uden fremgang.

Spredningsdiagrammerne for både den fonologiske (se Figur 3.26) og den ortografiske (se Figur 3.27) afstandsscore ved før- og efterst og for de ti items, børnene har skrevet ved begge testtidspunkter (se afsnit 3.4.3.1.1), viser, at de fleste børn har en positiv fremgang i deres stavescore fra før- til efterst. Både for den fonologiske og den ortografiske afstandsscore har alle børn, som har børnestavet med direkte lærerstøtte, fremgang. De resterende grupper har, uanset scoringsmetode, elever, der ikke forbedrer deres stavescore. For IT-støtte viser spredningsdiagrammerne, at det kun er 1-2 børn, som er i denne situation. For både indirekte lærerstøtte og kontrolgruppen har flere børn ikke forbedret deres stavescore.

Spredningsdiagrammet for læsning (se Figur 3.28) viser, ligesom dem for stavning, at langt de fleste børn forbedrer deres læsning fra før- til efterst. Der er dog en tendens til, at mange børn har næsten ingen fremgang, mens nogle børn har rigtig meget fremgang. Næsten alle børn, som har børnestavet med direkte lærerstøtte, viser fremgang. De resterende grupper har numerisk flere børn, der ikke forbedrer deres læsescore. Alle grupper har dermed børn uden fremgang i læsning, aflæst ved spredningsdiagrammet (se Figur 3.28).
Figur 3.26
Spredningsdiagram for sammenhængen mellem stavning ved eftertest og førtest, fonologisk afstandsscore, med referencelinjen ved $y=1x$ for at skelne børn med og uden fremgang.

Figur 3.27
Spredningsdiagram for sammenhængen mellem stavning ved eftertest og førtest, ortografisk afstandsscore, med referencelinjen ved $y=1x$ for at skelne børn med og uden fremgang.
Spredningsdiagrammerne giver os et visuelt overblik over fremgangen for børnene i de fire deltagergrupper. For at belyse, om andelen af børn med fremgang er større i én eller flere grupper end i andre, omdannes før- og eftertest-variablen til en fremgangsscore. Dette gøres ved at trække førtest-scoren fra eftertest-scoren, da højere score er dårligere end lavere score og fremgangen dermed bliver et positivt tal. Dernæst sættes grænseen mellem elever uden fremgang og elever med fremgang for læsescoren ved en fremgang på over fire point og for stavescoren ved en fremgang på over et point. Grænseen blev sat ved at lægge nul (ingen fremgang) sammen med fremgangsscores standardfejl og afrunde til nærmeste hele score. Standardfejlen er valgt, fordi den er et udtryk for, hvor meget gennemsnittet i stikprøven kan svinge fra en stikprøve til en anden. For fremgangsscoren for læsning er SE=4,10, for stavning er SE=0,90 uanset scoringsmetode. Ved at lægge den afrundede standardfejl til en fremgang på nul og sætte grænseen fremgang og ikke fremgang ved dette nye nulpunkt, mindsker jeg risikoen for, at nogle elevers fremgang blot er tilfældig.

Chi i anden-testen af homogenitet blev brugt for at undersøge, om der var signifikant forskel mellem de binomiale andele i deltagergrupperne på de afhængige variable læsning og stavning, når disse var kategorivariable. Posthoc-test med z-test af to andele med Bonferroni-justering for multiple sammenligninger blev brugt for at vurdere, om alle eksperimentelle grupper adskiller sig signifikant fra kontrolgruppen, og om direkte lærerstøtte har flere elever med fremgang end indirekte lærerstøtte, og om direkte lærerstøtte ikke adskiller sig fra IT-støtte. De samme hypoteser for forskellene i effekter blev altså testet med Chi i anden-testen som med ANCOVA-analysen.

3.5.3.3.1 Stavning

Uanset scoringsmetode kunne Chi i anden-testen af homogenitet ikke gennemføres, da det forventede antal deltageri i hver celle i en 2 x c tabel var mindre end fem for halvdelen af cellerne. Derfor blev Fishers test (2^c) i stedet foretaget mellem deltagergruppe og kategorivariblen fremgang eller ingen fremgang.
For en fremgang i stavning på over eller lig med én SE var andelen af deltagere med fremgang i kontrolgruppen:

- 12 af 20, 60% (FA)
- 13 af 20, 65% (OA)

I indirekte lærerstøtte:

- 17 af 20, 85% (FA)
- 15 af 20, 75% (OA)

I IT-støtte:

- 19 af 20, 95% (FA)
- 18 af 20, 90% (OA)

og uanset scoringsmetode alle deltagere i direkte lærerstøtte (100%) (se Figur 3.29 og Figur 3.30).

Uanset scoringsmetode var forskellen i andelen af deltagere med fremgang i de fire deltagergrupper, vurderet ved Fishers test signifikant:

- p =,002 (FA)
- p =,011 (OA)

Posthoc-analyse med parvise sammenligninger for de tre eksperimentelle grupper og kontrolgruppen samt mellem direkte og indirekte lærerstøtte og direkte lærerstøtte og IT-støtte, lavet med multiple Fishers test (2*2) og et Bonferroni-tilpasset statistisk signifikansniveau på p <,01, viste, at andelen af deltagere, der havde fremgang i deres stavescore, i direkte lærerstøtte var højere end i kontrolgruppen, vurderet ved Fishers test:

- p =,003, to-halet (FA)
- p =,008, to-halet (OA)

For den fonologiske score havde IT-støtte en marginalt signifikant højere andel af deltagere med fremgang i stavescore end kontrolgruppen, vurderet ved Fishers test:

- p =,020, to-halet (FA)

Denne forskel var for den ortografiske score ikke-signifikant, p >,01, to-halet. For den ortografiske score var der en marginalt signifikant højere andel af elever med fremgang i direkte end i indirekte støtte, vurderet ved Fishers test:

- p =,047, to-halet (OA)

ortografiske score tættere på at ligne hinanden i andelen af elever uden fremgang (se Figur 3.30), uanset scoringsmetode er forskellen mellem disse grupper ikke signifikant.

Figur 3.29
Søjlediagram for antal deltagere med ingen fremgang og med fremgang i det fonologiske afstandsmål af stavning for hver deltagergruppe.

Figur 3.30
Søjlediagram for antal deltagere med ingen fremgang og med fremgang i det ortografiske afstandsmål af stavning for hver deltagergruppe.

Note. n=20 for alle deltagergrupper.

Note. n=20 for alle deltagergrupper.
3.5.3.3.2 Læsning

For læsning kunne Chi i anden-testen af homogenitet gennemføres, da det forventede antal deltagere i hver celle i en 2 x c tabel var større end fem.

Figur 3.31
Søjlediagram for antal deltagere med ingen fremgang og med fremgang i det fonologiske afstandsmål af læsning for hver deltagergruppe.

Note. n=20 for alle deltagergrupper.

For læsning viste Chi i anden-test af homogenitet ved efter-test, at i kontrolgruppen var andelen af børn, der havde forbedret deres læsescore med mere end fire point:

- 9 af 20 deltagere (45%)

I direkte og indirekte støtte:

- 15 af 20 (75%)

I IT-støtte:

- 14 af 20 for (70%)

Der var således en klar tendens til, at flere deltagere i de grupper, der havde børnestavet, var gået mere end fire point frem i læsning fra før- til eftertest. Denne tendens fremgår tydeligt af

Figur 3.31, men der var ingen signifikant forskel imellem deltagergrupper, vurderet ved Chi i anden-test af homogenitet, p =,137. Tendensen i resultaterne, som kan aflæses af

Figur 3.31, minder om den, der blev fundet ved sammenligning af gennemsnit – med den største forskel mellem kontrolgruppen og indirekte lærerstøtte henholdsvis direkte lærerstøtte og mindre forskel mellem kontrolgruppen og IT-støtte.
3.5.4 Langtidseffekter for stavning og læsning

For at bestemme effekten af kontrolgruppe, direkte lærerstøtte, indirekte lærerstøtte og IT-støtte på antallet af korrekt stavede og læste ord et år efter undervisningen i 1. kl. blev tre ANCOVA-analyser foretaget: to med førtest-stavning og en med førtest-læsning som kovariat. I den ene test med førtest-stavning som kovariat var det stavning scoret som fonoLogisk afstand og i den anden stavning som ortografisk afstand.

Tabel 3.14
Gennemsnit og standardafvigelse ved test i 1. kl. for kontrolgruppen (KG), indirekte lærerstøtte (IL), IT-støtte (IT) og direkte lærerstøtte (DL).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Mål i 1.kl. (min.- maks.)</th>
<th>KG (M; n)</th>
<th>SD</th>
<th>IL (M; n)</th>
<th>SD</th>
<th>IT (M; n)</th>
<th>SD</th>
<th>DL (M; n)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavning</td>
<td>0-34</td>
<td>14,13 (16)</td>
<td>6,32</td>
<td>13,72 (18)</td>
<td>5,74</td>
<td>13,30 (20)</td>
<td>5,38</td>
<td>13,84 (19)</td>
<td>5,70</td>
</tr>
<tr>
<td>Læsning</td>
<td>0-78</td>
<td>43,19 (16)</td>
<td>19,01</td>
<td>39,68 (19)</td>
<td>13,32</td>
<td>46,20 (20)</td>
<td>16,02</td>
<td>38,42 (19)</td>
<td>17,62</td>
</tr>
</tbody>
</table>

Note. M=Gennemsnit, n=antal deltagere i gruppen, SD=standardafvigelse.

3.5.4.1 Stavning i 1. kl.

Der manglede ved efterbestem i 1. kl. data fra syv deltagere for stavecoren (Tabel 3.14). Dette skyltedes dels skoleskift, manglende forældregodkendelse og sygdom ved testning. Kontrolgruppen havde data fra 16 deltagere, indirekte lærerstøtte fra 18, IT-støtte havde som i børnehaveklasse 20 deltagere og direkte lærerstøtte havde 19. For at belyse om deltagere, der udgik af projektet fra førtest til testen i 1. kl., havde et væsentligt anderledes staveniveau end den samlede stikprøve, sammenlignes førtest-stavning, scoret med henholdsvis det fonoLogiske og det ortografiske afstandsmål, med og uden disse deltagere. Gennemsnit og standardafvigelse for stavning i børnehaveklasse før undervisningen er for den samlede stikprøve 26,08 (10,81) for fonoLogisk afstand og 27,78 (10,00) for ortografisk afstand. Uden de syv deltagere, der udgik ved testningen i 1. kl., er gennemsnit og standardafvigelse for stikprøven 25,71 (10,72) for fonoLogisk afstand og 27,43 (9,93) for ortografisk afstand. Gennemsnit og standardafvigelse for de syv deltagere, som udgik ved testningen i 1. kl., var 29,91 (11,87) for fonoLogisk og 31,51 (10,63) for ortografisk afstand. Vurderet ved gennemsnittene var de deltagere, der udgik af studiet, blandt deltagere med en numerisk højere stavcoren end gennemsnittet. En gennemgang af scoren for hver af de syv deltagere viste, at én deltagere havde en meget lav score og dermed var en sikker staver, mens resten scorede næsten ens med gennemsnittet eller højere og dermed var sammenlignelige eller mere usikre end gennemsnittet af stavere. Alt i alt var forskellene så små, at der ikke er grund til at tro, at resultaterne i denne del af analysen er meget anderledes, end de ville have været med de manglende deltagere. ANCOVA-analysen gennemføres derfor på et datasets med 73 deltagere: 16 i kontrolgruppen, 18 i indirekte lærerstøtte, 20 i IT-støtte og 19 i direkte lærerstøtte.

En ANCOVA-analyse med henholdsvis den fonoLogiske og ortografiske stavcoren ved førtest som kovariat blev brugt til at undersøge effekten af deltagergrouupper for antallet af korrekt stavede ord i 1. kl. Til brug for analysen blev førtest-stavcoren vendt, så den, ligesom antallet af korrekt stavede ord, ved højere score angav bedre staver. Dette blev gjort ved at trække hver stavcoren ved førtest fra den maksimale stavscore ved førtest.
Først blev det undersøgt om analysens antagelser var overholdt. For hverken analysen med den fonologiske eller ortografiske score ved førtest var der brud på disse.

Efter justering for førtest-stavning med fonologisk afstandscore var der ikke en signifikant effekt af deltagergruppe på antal korrekt stavede ord i 1. kl.:

- $F(3, 68) = 0,337, p = 0,798$, partial $\eta^2 = 0,015$ (lille)

Det samme var tilfældet for førtest-stavning med ortografisk afstandscore som kovariat:

- $F(3, 68) = 0,277, p = 0,842$, partial $\eta^2 = 0,012$ (lille)

Posthoc test med Bonferroni-justeringer viste uanset scoringsmetode ingen signifikante forskelle mellem kontrolgruppen og de eksperimentelle grupper. De justerede gennemsnit var meget sammenlignelige uanset om kovariaten var fonologisk eller ortografisk score ved førtest. De er derfor alene præsenteret for den fonologiske afstandsscore (Tabel 3.15). De justerede gennemsnit understøttede den tolkning, at der ikke var forskel mellem deltagergrupper, i det de var numerisk næsten ens.

Tabel 3.15
Justerede og ikke-justerede gennemsnit og spredning for antal korrekt stavede ord i 1. kl. og førtest-stavning med fonologisk afstandsscore som kovariat.

<table>
<thead>
<tr>
<th></th>
<th>Ikke-justeret</th>
<th>Justeret</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG</td>
<td>16</td>
<td>14,13</td>
<td>6,32</td>
</tr>
<tr>
<td>IL</td>
<td>18</td>
<td>13,72</td>
<td>5,74</td>
</tr>
<tr>
<td>IT</td>
<td>20</td>
<td>13,30</td>
<td>5,38</td>
</tr>
<tr>
<td>DL</td>
<td>19</td>
<td>13,84</td>
<td>5,70</td>
</tr>
</tbody>
</table>

Note. $N=deltagersotal,$ $M=gennemsnit,$ $SD=standardafvigelse,$ $SE=standardfejl,$ $KG=kontrolgruppe,$ $DL=indirekte lærerstøtte,$ $IT=IT-støtte,$ CI=konfidensinterval

*aKovariater, som optræder i modellen, er evalueret ved følgende værdi: fonologisk afstandsscore for stavning ved førtest (vendt) $=19,49$.

3.5.4.2 Læsning i 1. kl.

På samme måde blev en ANCOVA-analyse brugt til at undersøge effekten af deltagergruppe for antallet af korrekt læste ord i 1. kl. Læsescoren ved førtest, scoret som fonologisk afstand, var kovariat. Førtest-læsescoren blev efter samme metode som førtest-stavscoren vendt (se afsnit 3.5.4.1), så en højere score var lig med bedre oplæsning.

Først blev det undersøgt om analysens antagelser var overholdt. Der var ingen brud på disse. Efter justering for førtest-læsning var der ikke en signifikant effekt af deltagergruppe for antal korrekt læste ord i 1. kl.:

- F(3, 69) = 0,799, p = .499, partial η² = .034 (lille effekt)

Posthoc test med Bonferroni-justeringer viste ingen signifikante forskelle mellem kontrolgruppen og eksperimentelle grupper.

Tabel 3.16

<table>
<thead>
<tr>
<th></th>
<th>ikke-justeret</th>
<th>Justeret</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SE</td>
</tr>
<tr>
<td>KG</td>
<td>16</td>
<td>43.19</td>
<td>19.01</td>
<td>41.23</td>
</tr>
<tr>
<td>DL</td>
<td>19</td>
<td>38.42</td>
<td>17.62</td>
<td>38.78</td>
</tr>
<tr>
<td>IL</td>
<td>19</td>
<td>39.68</td>
<td>13.32</td>
<td>41.12</td>
</tr>
<tr>
<td>IT</td>
<td>20</td>
<td>46.20</td>
<td>16.02</td>
<td>46.06</td>
</tr>
</tbody>
</table>

Note. N=deltagerantal, M=gennemsnit, SD=standardafvigelse, SE=standardfejl, KG= kontrolgruppen, DL=direkte lærerstøtte, IL=indirekte lærerstøtte, IT=IT-støtte, CI=konfidensinterval

*Kovariater, som optages i modellen, er evalueret ved følgende værdi: fonologisk afstandsscore for læsning ved førtest (vendt) = 20,57.

For hverken stavning eller læsning er der i 1. kl. signifikant forskel mellem deltagergrupperne. På baggrund af dette resultat er der i indeværende studie ikke evidens for, at børnene gennem undervisning med børnestavning lærer noget, som børnene i kontrolgruppen i løbet af det næste år ikke lærer og indhenter gennem en traditionelle undervisning i stavning og læsning.

3.6 Diskussion. Studie 1

I dette afsnit besvares forskningsspørgsmålene i Studie 1 med resultaterne af effektundersøgelsen. Resultaterne diskuteres i lyset af tidligere studier. På denne baggrund diskuteres også mulige nye forskningsspørgsmål og perspektiver for praksis.

De to første forskningsspørgsmål (se afsnit 3.3) omhandler henholdsvis effekten af undervisning med direkte lærerstøtte over for indirekte lærerstøtte og effekten af undervisning med direkte lærerstøtte over for IT-støtte. Forskningsspørgsmålene besvares for en færdighed ad gangen (stavning, læsning, opmærksomhed på sproglyde, bogstavkendskab).

Under diskussionen af resultaterne for stavning behandles afhandlingens tredje forskningsspørgsmål, om effekten af undervisningen. Spørgsmålet er om effekten alene er knyttet til børnenes evne til at anvende det alfabetiske princip i stavning, eller om børnene også tilegner sig ortografisk viden, som de kan anvende i deres stavning.

3.6.1 Stavning

For stavning var hypotesen, at børnestavning med direkte støtte ville være bedre til at udvikle børnenes stavning end børnestavning med indirekte støtte. For IT-støtte var hypotesen, at denne støtte ville fungere som direkte støtte og effekten derfor ville være sammenlignelig med direkte støtte.
3.6.1.1 Direkte og indirekte støtte

Hyppotesen om den direkte støtte overlegenhed i forhold til indirekte støtte var baseret på fund fra tidligere studier af børnestavning, der sammenligner forskellige måder at støtte børnenes børnestavning på. Disse studier finder, at de former for støtte, der direkte støtter børnene i at forbedre deres børnestavning, er bedre end mindre direkte former for støtte (Cannella, 1991; Levin og Aram, 2013; Rieben m.fl., 2005; Pulido og Morin, 2018) (se afsnit 3.1.3.1.1.1). Endvidere er der evidens for effekt på stavning af børnestavning med direkte støtte i sammenligning med kontrolgrupper, som ikke børnestaver (se afsnit 3.1.3.1.1.1.1). Der er endnu ikke entydig evidens for effekt på stavning af børnestavning med indirekte støtte (se afsnit 3.1.3.1.1.1.2).

3.6.1.1 Direkte støtte i sammenligning med kontrolgrupper

Studie 1 fandt ved eftertest, at børnene i direkte lærerstøtte stavede signifikant bedre end børnene i kontrolgruppen. Dette var der evidens for:

- Uanset, om scoringsmetoden var fonologisk eller ortografisk.
- Både ved en blanding af trænede og utrænede ord og ved utrænede ord alene.

Ved sammenligningen af andelen af børn, der havde fremgang, adskilte direkte lærerstøtte sig også signifikant fra kontrolgruppen uanset scoringsmetoden.

Fordi børnene i kontrolgruppen i deres klasseundervisning, ifølge lærernes egne vurderinger (se Figur 3.21), i høj grad arbejdede med opmærksomhed på sproglyde, bogstaver og i nogen grad øvede at læse lette lydrette ord og børnestave, så er fordelen til gruppen af børn, som børnestavede med direkte støtte i sammenligningen med kontrolgruppen, en fordel til børnestavning med direkte støtte over denne type undervisning. Fordelen til direkte lærerstøtte over kontrolgruppen kan i det lys ikke tilskrives, at det, kontrolgruppen laver, er irrelevant, eller at kontrolgruppen endnu ikke har fået egentlig læseundervisning. Samtidig kan effekten i direkte lærerstøtte ikke skelnes fra klasseundervisningen. Forstået på den måde, at det på baggrund af indeværende design er muligt at vurdere, i hvor høj grad børnestavning med direkte støtte bidrager til bedre stavning ud over klasseundervisningen, men at det på baggrund af designet ikke er muligt at vide, om den samme effekt ville have været opnået i klasser, som ikke sideløbende havde fået relevant læseundervisning.

På den baggrund er resultaterne samlet set evidens for, at børnestavning med direkte lærerstøtte, i sammenligning med relevant kontrolgruppeundervisning, giver bedre kvalitet i børnenes stavning af såvel trænede som utrænede ord. Dette gælder både børnenes anvendelse af det alfabetiske princip i stavning, vurderet ved den fonologiske scoringsmetode, og ortografiske aspekter i børnenes stavning, vurderet ved den ortografiske scoringsmetode. Alle effektstørrelserne for forskellige mellem direkte lærerstøtte og kontrolgruppen er moderat-store (d ≥0,74). Omsat til point svarer disse effektstørrelser, for børnenes stavning af utrænede ord, til forskelle i de to grupper ved eftertest på mellem 8 og 9 point. Svarende til at børnene i direkte lærerstøtte i gennemsnit staver otte-ni af ni ord i stavetesten med et ekstra fonologisk acceptabelt eller korrekt bogstav. Jeg vurderer dette til at være et ikke-uvæsentligt bidrag til kvaliteten af børnenes stavning.

Resultaterne, som viser signifikant bedre stavning ved eftertest og signifikant flere børn med fremgang i direkte lærerstøtte sammenlignet med kontrolgruppen, er første skridt på vejen til at besvare forskningsspørgsmål 1 for stavning. Dette skyldes, at hypotesen om fordelen til direkte over indirekte lærerstøtte, dels bestod i en forventning om en fordel til direkte lærerstøtte over kontrolgruppen, og dels bestod i fravær af fordel til direkte lærerstøtte over kontrolgruppen (se afsnit 3.3). Første del af denne
hypotese bekræftes således af resultaterne om signifikante forskelle mellem direkte lærerstøtte og kontrolgruppen.

Evidensen for større effekt på stavning af børnestavning med direkte støtte i sammenligning med traditionel undervisning er ny i en dansk kontekst. Den er væsentlig, fordi den bidrager med viden om udbyttet af børnestavning med direkte støtte for kvaliteten af stavning. For den dybe danske ortografi er der, på baggrund af denne, begyndende viden om effekten af børnestavning med direkte støtte. Effekten kan, på grund af designet af Studie 1, ikke generaliseres til en kontekst, hvor børnene ikke sideløbende får undervisning i kendte forudsætninger for stave- og læsefærdighed. Fremtidige studier kan vurdere betydningen af den sideløbende undervisning i forudsætninger fx ved at sammeligne udbyttet af børnestavning med direkte støtte i grupper af børn med ens forudsætninger - men med og uden sideløbende udervisning i disse forudsætninger.

Evidensen er endvidere væsentlig, da den understøtter den eksisterende evidens fra internationale forskningsstudier for, at børnestavning med direkte støtte er en undervisningsmetode, der kan fremme kvaliteten af børns stavning. Endvidere bidrager resultatet, fordi der er effekt af direkte lærerstøtte på såvel den fonologiske som den ortografiske kvalitet i stavningen, til den meget begrænsede evidens for effekten på ortografiske aspekter af stavning (se afsnit 3.1.3.1.1.2), særligt i dybe ortografier, hvor kun et tidligere studie har fundet effekt ved ortografiske scoringsmetoder (Rieben m.fl., 2005).

Resultatet om, at børnestavning med direkte lærerstøtte i sammenligning med kontrolgruppen er forbundet med højere kvalitet i børnenes stavning vurderet med ortografiske mål, er en del af svaret på forskningsspørgsmål 3 (se afsnit 3.3). Dette skyldes, at det alene var en forventning, at børn, som børnestavede med direkte støtte, ville udvikle den ortografiske kvaliteten i deres stavning. Resultatet bekræfter således den del af hypotesen, som er en forventning om, at børnestavning med direkte støtte kan fremme den ortografiske kvalitet i børnenes stavning.

Dette er interessant, både i et praksis- og i et teoretisk perspektiv, da det understøtter, som diskuteret i afsnit 3.3., at børnestavning ikke alene er begrænset til at fremme tilgjennelser af det alfabetiske princip, men også kan understøtte tilgjennelser af ortografiske aspekter af stavning. Dette peger i retning af, at børnestavning med direkte støtte kan være en undervisningsform, som potentielt også kan inddrages, når undervisningens formål er tilgjennelser af korrekt stavning. Resultaterne i indeværende studie kan dog alene ses som begyndende evidens for børnenes tilgjennelse af ortografiske aspekter af stavning i en dyb ortografi.
gennem børnestavning med direkte støtte. Der er behov for studier, der fx udvider kompleksiteten i de fonem-grafem-forbindelser, børnene træner.

3.6.1.2 Indirekte støtte i sammenligning med kontrolgruppen

Studie 1 fandt ved eftertest, at børnene i indirekte lærerstøtte generelt ikke stavede signifikant bedre end børnene i kontrolgruppen. Dette var der evidens for:

- Ved den fonologisk score. Kun ved utrænede ord.

Ved en blanding af trænede og utrænede ord var den fonologiske kvalitet i stavningen for børn, der havde børnestavet med indirekte støtte, signifikant bedre end kontrolgruppen. Ved sammenligningen af andelen af børn, der havde fremgang, adskilte indirekte lærerstøtte sig ikke signifikant fra kontrolgruppen uanset scoringsmetode.

På den baggrund er der mest evidens i resultaterne for, at børnestavning med direkte lærerstøtte, i sammenligning med relevant kontrolgruppeundervisning, ikke forbedrer kvaliteten i børnenes stavning. Resultatet for den fonologiske kvalitet i børnenes stavning af såvel trænede som utrænede ord viser dog, at børn med indirekte lærerstøtte forbedrer kvaliteten i deres stavning mere end børnene i kontrolgruppen.

Fordi kvaliteten af børnenes stavning af utrænede ord er en indikator for, at børnene har tilegnet sig ny viden, som de kan anvende ved stavning af nye ord, og for at de ikke blot forbedrer deres stavning på baggrund af fx udenadslære, så er effekten på stavning af utrænede ord særlig væsentlig. For børnenes stavning af utrænede ord er der ikke evidens for, at børnene, som har børnestavet med indirekte støtte, staver bedre end kontrolgruppen. Dette gælder hverken børnenes anvendelse af det alfabetiske princip i stavning, vurderet ved den fonologiske scoringsmetode, eller ortografiske aspekter i børnenes stavning, vurderet ved den ortografiske scoringsmetode. Effektstørrelserne for forskellene mellem indirekte lærerstøtte og kontrolgruppen er for utrænede ord små (d =0,43 (FA), d =0,34 (OA)). Omsat til point svarer disse effektstørrelser, for børnenes stavning af utrænede ord, til forskelle i de to grupper ved eftertest på mellem 5,5 og 4 point. Denne forskel er cirka halveret i sammenligning med forskellen mellem direkte støtte og kontrolgruppen.

Den ikke-signifikant bedre stavning ved eftertest og de ikke-signifikant flere børn med fremgang i indirekte lærerstøtte sammenlignet med kontrolgruppen, er endnu et skridt på vejen til at besvare forskningsspørgsmål 1 for stavning. Dette skyldes, at hypotesen om fordel i direkte over indirekte lærerstøtte bestod dels i en forventning om en fordel til direkte lærerstøtte over kontrolgruppen og dels i en forventning om fravær af fordel i indirekte lærerstøtte over kontrolgruppen (se afsnit 3.3). Sidste del af denne hypotese bekræftes for utrænede ord, men ikke for den fonologiske score ved trænede ord.

108
Til dette skal det nævnes, at ikke-signifikante forskelle godt kan afspejle forskelle, som i et studie med flere deltagere ville have været statistisk signifikante. Med 20 deltagere i hver gruppe havde indeværende studie ikke nok power (Cohen, 1988) til at identificere de små effektstørrelser mellem indirekte støtte og kontrolgruppen. En poweranalyse (kilde: https://www.anzmtg.org/stats/PowerCalculator/PowerANOVA) med værdien for power sat til 0,80 og dermed 80 % sandsynlighed for at identificere en effekt, når der en effekt (Cohen, 1988), antallet af grupper til 4, effektstørrelse på 0,43 (FA), 0,34 (OA), signifikansniveau på 0,01 (Bonferroni-justering for fem parvise sammenligninger) viste, at antallet af deltagere i hver gruppe skulle have været 23 for at finde en signifikant forskel mellem indirekte støtte og kontrolgruppen ved den fonologiske score og 35 ved den ortografiske score. Dette ændrer dog ikke på, at effektstørrelserne er små, og for den fonologiske score nærmer sig niveauet - for den ortografiske score er under niveauet - for det Hattie ifølge Petty (2009) definerer som det gennemsnitlige udbytte af indsatser, der iværksættes i uddannelseskontekst. Hvis indsatsen i denne terminologi skal have fremragende effekt, skal effektstørrelsen være over 0,6, hvilket ikke er tilfældet for forskellen mellem indirekte støtte og kontrolgruppen. Fremtidige studier kan løse disse usikkerheder i tolkningen af den ikke-signifikante forskel mellem indirekte støtte og kontrolgruppen ved at have flere deltagere i studiet.

Evidensen for den lille effekt på stavning, af børnestavning med indirekte støtte i sammenligning med traditionel undervisning, er ny i en dansk kontekst. Den er væsentlig, fordi den bidrager med viden om udbyttet af børnestavning med indirekte støtte på kvaliteten af stavning. Effekten er hverken stor eller signifikant for børnenes stavning af utrænede ord i sammenligning med traditionel undervisning, men indikerer ikke, at børnestavning med indirekte støtte påvirker børnens stavning negativt. Tværtimod er tendensen i data en konsekvent fordel til indirekte støtte over kontrolgruppen, som endog er signifikant, når børnenes stavning af trænede ord medregnes i stavscoren.

Evidensen er endvidere væsentlig, da den understøtter den eksisterende evidens fra internationale forskningsstudier for, at børnestavning med indirekte støtte ikke er en sikker metode til at fremme kvaliteten af børns stavning.

Ingen resultatet viser, at børnestavning med indirekte lærerstøtte i sammenligning med kontrolgruppen er forbundet med højere ortografisk kvalitet i børnenes stavning. Resultatet er en del af svaret på forskningsspørgsmål 3 (se afsnit 3.3). Dette skyldes, at det alene var en forventning, at børn, som børnestavede med direkte støtte, ville udvikle den ortografiske kvaliteten i deres stavning. Resultatet bekræfter denne hypotese ved, at indirekte støtte ikke adskiller sig fra kontrolgruppen på den ortografiske score.

3.6.1.1.3 Sammenligning af direkte og indirekte støtte

Studie 1 fandt ved eftertest ikke evidens for, at børnene i direkte lærerstøtte stavede signifikant bedre end børnene i indirekte lærerstøtte. Dette gjaldt:

- Uanset, om scoringsmetoden var fonologisk eller ortografisk.
- Hverken ved en blanding af trænede og utrænede ord eller ved utrænede ord alene.

Ved sammenligningen af andelen af børn, der havde fremgang, adskilte direkte lærerstøtte sig ikke signifikant fra indirekte uanset scoringsmetode.

Et maginalt signifikant resultat indikerede dog en tendens til en signifikant fordel til direkte lærerstøtte over indirekte lærerstøtte. Ved den ortografiske score var andelen af børn med fremgang marginalt signifikant højere i direkte end i indirekte støtte. De justerede gennemsnit for de to grupper (se Tabel 3.7) og effektstørrelsen for forskellene viste ligeledes en tendens til en fordel til direkte- over indirekte støtte.
For utrænede ord var effektstørrelsen for forskellen lille d =0,32 (FA), og d =0,37 (OA). Svarende til en forskel på henholdsvis 3,5 og 4 point, og således, for den fonologiske score, væsentlig mindre end forskellen mellem direkte støtte og kontrolgruppen, men, for den ortografiske score, sammenlignelig med denne (se afsnit 3.6.1.1.2).

Den ikke-signifikante forskel mellem direkte lærerstøtte og indirekte lærerstøtte, er sidste skridt på vejen til at besvare forskningsspørgsmål 1 for stavning. Ved direkte sammenligning af de to grupper er der ikke evidens for en signifikant forskel mellem dem, og hypotesen bekræftes ikke her. Som ved diskussionen af resultatet for sammenligningen af direkte støtte og kontrolgruppen (se afsnit 3.6.1.1.2) er det her relevant, at ikke-signifikante forskelle godt kan afspejle forskelle, som i et studie med flere deltagere ville have været signifikante. Tendenserne i indeværende studie er konsekvent en fordel af direkte over indirekte støtte, og denne fordel er marginalt signifikant ved sammenligning af andelen af børn med fremgang. Som før diskuteret (se afsnit 3.6.1.1.2) er det sandsynligt, at forskelle med effektstørrelser omkring d =0,4 ville have være signifikante i et studie med lidt flere deltagere. Dette ændrer dog ikke på, at effektstørrelserne for forskellen er små, og lige under niveauet for det gennemsnitligt udbytte af indsatser, der iværksættes i en uddannelseskontekst (Petty, 2009). Tendensen i data er dog i overensstemmelsen med hypotesen og tidligere forskningsstudier, der sammenligner udbytet af direkte og indirekte støtte på stavning, men forskellen er ikke store nok til at være signifikante med indeværende studies gruppestørrelse. Fremtidige studier kan læse disse usikkerheder i tolkningen af den ikke-signifikante forskel mellem direkte og indirekte støtte ved at have flere deltagere i studiet.

Endnu et resultat beplyste forskellen mellem direkte og indirekte støtte. Der var en signifikant interaktionseffekt mellem deltagergruppe og børnenes stavning af utrænede ord med simple henholdsvis komplekse fonem-grafem-forbindelser. De justerede gennemsnit for børnenes stavning af utrænede ord med simple henholdsvis komplekse fonem-grafem-forbindelser indikerede, at direkte støtte særligt havde en fordel over indirekte støtte ved ord med komplekse fonem-grafem-forbindelser. Evidensen bestod i at den store forskel for børnenes stavning af utrænede ord med:

- Simple forbindelser var mellem de tre eksperimentelle grupper og kontrolgruppen.
- Komplekse forbindelser var mellem direkte lærerstøtte og de to andre eksperimentelle grupper samt kontrolgruppen.

Denne analyse blev planlagt efter, at studiet var designet, og blev derfor gennemført på grundlag af få ord (4 og 5). Af de grunde var analysen eksplorativ, og resultaterne må bekræftes i fremtidige studier, der er designet til at belyse denne forskel. Men resultatet indikerer, at børnestavning med direkte støtte kan være særlig væsentlig for at fremme stavning af nye ord med komplekse fonem-grafem-forbindelser.

Ingen af resultaterne fra de planlagte analyser viser, at børnestavning med indirekte i sammenligning med direkte støtte er forbundet med højere ortografisk kvalitet i børnenes stavning. Dog er der en marginal signifikant fordel til direkte over indirekte støtte ved andelen af børn med fremgang i den ortografiske score. Endvidere understøtter den signifikante interaktionseffekt mellem deltagergruppe og børnenes stavning af ord med simple henholdsvis komplekse fonem-grafem-forbindelser samt tolkningen af histogrammet for interaktionen (Figur 3.25), at børnestavning med direkte støtte kan være særlig væsentlig for, at børnene tilegner sig viden om komplekse fonem-grafem-forbindelser. Resultaterne belyser forskningsspørgsmål 3 (se afsnit 3.3). Dette skyldes, at det alene var en forventning, at børn, som børnestavede med direkte støtte, ville udvikle den ortografiske kvalitet i deres stavning. Resultatet bekræfter ikke denne hypotese ved signifikante forskelle mellem direkte og indirekte støtte ved den ortografiske score ved planlagte analyser, men hypotesen understøttes tydeligt ved, at de største forskelle

Selvom tendenserne for forskellen mellem direkte og indirekte støtte var som i tidligere forskningsstudier, så var forskellen ikke signifikant i indeværende studie, hvilket den har været i tidligere studier, der sammenligner effekten af direkte og indirekte støtte (Cannella, 1991; Levin og Aram, 2013; Rieben m.fl., 2005). Jeg har i gennemgangen af resultaterne peget på gruppestørrelsen som en mulig årsag til forskelle i resultater, men et nærmere kig på de tre studier kan måske bidrage yderligere til at forklare forskellene i resultater.

I Canella (1991) er effektstørrelsen ikke oplyst, men på baggrund af gennemsnit og standardafvigelser er effektstørrelsen beregnet for forskellen mellem direkte og indirekte støtte (d =0,63) for utrænede ord med en fonologisk score, mens den i indeværende studie for utrænede ord også med fonologisk score er næsten numerisk halveret (d =0,32). I Canella (1991) består den direkte støtte i, at børnene børnestaver et ord, hvorefter de diskuterer stavemåden med tre klassekammerater, og sammen med disse skal nå frem til en stavemåde, som gruppen er enige om. Indirekte støtte består i, at børnet selv børnestaver ord og børnestaver navne, som de har set læreren skrive den korrekte stavemåde på. Børnene er i midten af børneshaveklasse-førløbet, men har ikke fået egentlig læseundervisning i klassen, da undervisningen har haft fokus på leg. En mulig årsag til, at forskellen mellem direkte og indirekte støtte er væsentlig større end i indeværende studie, kan være, at børnenes forudsætninger er væsentlige for at lære af indirekte støtte, og at forudsætningerne i studiet af Canella (1991) ganske enkelt er meget lave for mange børn. Indevaluarnde studie udelukker børnene med lavest forudsætninger. De bedre forudsætninger kan have
gjort det nemmere for børnene at lære af den indirekte støtte, og måske derfor er effektstørrelsen mindre i indeværende studie. En anden forskel er de ord, børnene skriver. Ordene er i indeværende studie nøjere udvalgt til generelt at være lette at identificere sproglyde i (se afsnit 3.3.1), hvilket kan være en årsag til, at den indirekte støtte virker bedre for børnene i indeværende studie end i Canella (1991) og dermed mindsker forskellen mellem indirekte og direkte støtte. Derfor er det muligt, at det er forskellen i effekten af børnernes stadning med indirekte støtte, der er en fordel til i indeværende studie, og at denne fordel mindsker forskellen mellem indirekte og direkte støtte i indeværende studie i sammenligning med Canella (1991).

Sammenligningen med resultaterne i tidligere studier peger på flere mulige årsager til, at forskellen mellem direkte og indirekte støtte i indeværende studie ikke er signifikant, men er det i tre andre studier. Flere af disse knytter sig til, at indirekte støtte i indeværende studie har en fordel over direkte støtte i andre studier, mens dette ikke var tilfældet for direkte støtte. Denne fordel kan være knyttet til, at den indirekte støtte er mere omfattende i indeværende studie, at det, børnene i indeværende studie skal lære, er mindre kompleks, og at børnenes forudsætninger er bedre i indeværende studie. En sidste mulig årsag er, at indeværende studier har for få deltagere i hver gruppe til at identificere forskelle mellem to grupper ved små effektstørrelser.

3.6.1.2 Direkte og IT-støtte

Hypotesen i indeværende studie var, at IT-støtte ville være sammenlignelig med direkte lærerstøtte, og at effekten af IT-støtte ville afgjere sig i den fonologiske stavnings kvalitet (se afsnit 3.3). Denne hypotese belyses dels ved at sammenligne IT-støtte med kontrolgruppen og ved direkte sammenligning mellem direkte lærerstøtte og IT-støtte.

3.6.1.2.1 IT-støtte i sammenligning med kontrolgruppen

Studie 1 fandt ved eftertest, at børnene i IT-støtte generelt stavede signifikant bedre end børnene i kontrolgruppen. Dette var der evidens for:

- Både ved en blanding af trænede og utrænede ord og ved utrænede ord ved den fonologisk score.
- Ved en blanding af trænede og utrænede ord ved den ortografisk score.

Der var ved den ortografiske score ikke evidens for en fordel til IT-støtte over kontrolgruppen ved stavning af utrænede ord. Ved sammenligningen af andelen af børn, der havde fremgang, adskilde IT-støtte sig uanset scoringsmetode ikke signifikant fra kontrolgruppen. Forskellen var dog ved den fonologiske score marginalt signifikant.
Som for direkte lærerstøtte er fordelen til gruppen af børn, som børnestavede med IT-støtte i sammenligningen med kontrolgruppen, en fordel over klasseundervisning med fokus på opmærksomhed på sproglyde, bogstaver og begyndende læsning og børnestavning. Fordelen til IT-støtte over kontrolgruppen kan i det lys ikke tilskrives, at kontrolgruppen fx endnu ikke har fået egentlig læseundervisning. Samtidig kan effekten i IT-støtte, som for direkte lærerstøtte, ikke skelnes fra klasseundervisningen, se diskussionen i afsnit 3.6.1.1.1.

For den fonologiske kvalitet i børnenes stavning, som et udtryk for børnenes anvendelse af det alfabetiske princip i stavning, er resultaterne samlet set entydig evidens for, at børnestavning med IT-støtte, i sammenligning med relevant kontrolgruppemandervisning, giver bedre kvalitet i børnenes stavning af såvel trænede som utrænede ord.

For den ortografiske kvalitet er evidensen mindre entydig, den er faktisk kun tilstede for trænede og utrænede ord samtidig, og der er flere resultater, der viser, at børnene i IT-støtte ikke er signifikant bedre end kontrolgruppen ved ortografiske aspekter i stavning.

Effektstørrelsen for forskellen mellem IT-støtte og kontrolgruppen ved utrænede ord er ved den fonologiske score moderat (d =0,53) og ved den ortografiske score lille (d =0,44). Omsat til point svarer disse effektstørrelser, for børnenes stavning af utrænede ord, til forskelle i de to grupper ved etkertest på henholdsvis 7 (FA) og 5 (OA) point. Hvilket svarer til, at børnene i IT-støtte i gennemsnit staver syv af ni ord i stavetesten med et ekstra fonologisk acceptabelt bogstav. For den fonologiske score vurderer jeg dette til at være et ikke-uvæsentligt bidrag til kvaliteten af børnenes stavning. For den ortografiske score er forskellen mindre, og minder om den mellem indirekte støtte og kontrolgruppen (se afsnit 3.6.1.1.2).

For den fonologiske score viser resultaterne signifikant bedre stavning ved etkertest og marginalt signifikant flere børn med fremgang i IT-støtte sammenlignet med kontrolgruppen. Disse resultater er et skridt på vejen til at besvare forskningsspørgsmål 2 for stavning. Hypotesen om sammenlignelige effekter i IT- og direkte støtte bestod i en forventning om en fordel til direkte lærerstøtte over kontrolgruppen, men også til IT-støtte over kontrolgruppen (se afsnit 3.3). Hypotesen bekræftes således af resultaterne om signifikante forskelle mellem IT-støtte og kontrolgruppen, men også af resultaterne og signifikante forskelle mellem direkte lærerstøtte og kontrolgruppen (se afsnit 3.6.1.1.1).

Evidensen for bedre kvalitet i fonologisk stavning for børnestavning med IT-støtte end for traditionel undervisning, er ny i en dansk kontekst og internationalt. Denne evidens er væsentlig, da den viser, at IT-støttet børnestavning har potentielle som undervisningsmetode, der kan forbedre den fonologiske kvalitet af børnenes stavning. Fordi indværende studie, denne forfatter bekendt, er det første til at påvise en effekt af IT-støttet børnestavning, er det væsentligt at replikere fundet i nye studier. Dels havde jeg i indværende studie ikke et direkte sammenligningsgrundlag til at vurdere effekten af denne type undervisning. Hvorfor deltagergrupperne i indværende studie er små, så jeg undgik at udsætte mange børn for en eksperimental undervisningsform. På baggrund af resultaterne i indværende studie er det i fremtidige studier et forgrund for at undersøge effekten i større deltagergrupper uden denne bekymring. Udover at undersøge effekten af IT-støttet børnestavning i en større gruppe af børn, så kan fremtidige studier også fokusere på at forbedre IT-støtten. En uformel observation fra flere forskningsassistentere var, at flere børn synes, at ordene for hurtigt blev svære, mens andre fandt dem for nemme. Fremtidige studier kan undersøge samspillet mellem adaptiv tilpasning af ordenes sværhedsgrad og børnestavning med opklæningsstøtte. Der er tidligere vist effekt af adaptiv teknologi (fx Saine, 2013). Et fremtidigt studie kunne også programmere IT-støtten, så den gav mere end opklæningsstøtte, når børnene havde brug for det. Dette kunne i endnu højere grad understøtte, at børnene kan arbejde mere selvstændigt med
børnestavning. Endnu et interessant spørgsmål, som ikke er blevet belyst i indeværende studie, da gruppestørrelsen var for lille til at introducere endnu en variabel, er om børnenes forudsætning har betydning for deres udbytte af børnestavning med IT-støtte.

Et andet væsentligt fund er overensstemmelsen mellem syntesens designkarakteristika (3.2.1) og den ikke-signifikante effekt på det ortografiske mål. Der er altså evidens for, at IT-støtte netop udvikler fonologiske aspekter af stavning. Talesyntesen blev designet til at læse børnenes staveforsøg, mens børnene skriver, ved at tildele hvert bogstav en specifik sproglyd og danne syntese af disse sproglyde. Korrekt stavede ord genkendes dog af talesyntesen, som læser disse fra et udtauleksikon og derfor bryder med de regler, syntesen ellers læser efter. Det betyder, at børnene det meste af tiden bliver mindet om de forbindelser mellem bogstav og lyd, som syntesen er kodet til at læse, men at talesyntesen samtidig kan bekræfte børnene i, at fx KYS er en korrekt stavemåde af ordet kys. Fremtidige studier kan udfolde dette aspekt og undersøge, om synteser med andre designkarakteristika kan fremme børnenes ortografiske viden. I designet af syntesen og undersøgelsen af eksisterende syntesers brugbarhed kan man lade sig inspirere af denne forfatters systematiske udviklingsarbejde i forbindelse med syntesen til indeværende studie (se afsnit 3.2.1).

Resultatet bidrager endvidere, fordi der kun er effekt af IT-støtte på den fonologiske score, til at besvare forskningsspørgsmål 3 (se afsnit 3.3). Dette skyldes, at det alene var en forventning, at børn, som børnestavede med direkte støtte, ville udvikle den ortografiske kvalitet i deres stavning. Resultatet bekræfter således hypotesen ved at IT-støtte ikke adskiller sig fra kontrolgruppen ved den ortografiske score.

Som for effekten af direkte støtte, kan effekten af IT-støtte ikke generaliseres til en kontekst, hvor børnene ikke sideløbende får undervisning i kendte forudsætninger for stave- og læsefærdighed (se diskussionen i afsnit 3.6.1.1.1)

3.6.1.2.2 Sammenligning af IT-støtte og direkte støtte
Studie 1 fandt ved eftertest ikke evidens for, at børnene i direkte lærerstøtte stavede signifikant bedre end børnene i IT-støtte. Dette gjaldt:

- Uanset, om scoringsmetoden var fonologisk eller ortografisk.
- Hverken ved en blanding af trænede eller utrænede ord og ved utrænede ord alene.

Ved sammenligningen af andelen af børn, der havde fremgang, adskilte direkte lærerstøtte sig ikke signifikant fra IT-støtte uanset scoringsmetode.

De justerede gennemsnit for de to grupper (se Tabel 3.7) og effektstørrelsen for forskellene indikerer en stabil men lille (d ≤0,28) tendens til en fordel for direkte- over IT-støtte. For utrænede ord svarede denne forskel til en forskel på henholdsvis 2 (FA) og 3 (OA) point, og er således den numerisk mindste forskel mellem grupper frem til nu.

Den ikke-signifikante forskel mellem IT-støtte og direkte lærerstøtte, er sidste skridt på vejen til at besvare forskningsspørgsmål 2 for stavning. Ved direkte sammenligning af de to grupper er der ikke evidens for en signifikant forskel mellem dem, og hypotesen bekræftes her. Som ved diskussionen af resultatet for sammenligningen af direkte støtte og kontrolgruppen (se afsnit 3.6.1.1.2) er det her relevant, at ikke-signifikante forskelle godt kan afspejle forskelle, som i et studie med flere deltagere ville have været signifikante. Tendenserne i indeværende studie er konsekvent en fordel af direkte- over IT-støtte.
Effektstørrelserne for forskellene mellem IT- og direkte støtte er dog mellem 0,2 og 0,3 og tæt på at være ikke væsentlige i en uddannelsessammenhæng (Petty, 2009).

Ingen af resultaterne fra de planlagte analyser viser, at børnestavning med IT-støtte i sammenligning med direkte støtte er forbundet med lavere ortografisk kvalitet i børnenes stavning, men den signifikante interaktionseffekt mellem deltagergruppe og børnenes stavning af ord med simple henholdsvis komplekse fonem-grafem-forbindelser samt tolkningen af histogrammet for interaktionen (Figur 3.25), understøtter at børnestavning med direkte støtte kan være særlig væsentlig for, at børnene tegner sig viden om komplekse fonem-gram-forbindelser. Resultaterne belyser forskningsforholdsmål 3 (se afsnit 3.3). Dette skyldes, at det alene var en forventning, at børn, som børnestavede med direkte støtte, ville udvikle den ortografiske kvaliteten i deres stavning. Resultatet bekræfter ikke denne hypotese ved signifikante forskelle mellem direkte og IT-støtte ved den ortografiske score ved planlagte analyser, men hypotesen understøttes tydeligt ved, at de største forskelle mellem direkte og IT-støtte optræder ved ortografiske mål. Endvidere understøtter tolkningen af den signifikante interaktion, at direkte støtte er særlig væsentlig for tilegnelse af ortografisk viden, her udtryk som evnen til at stave nye ord med komplekse fonem-grafem-forbindelser. Samlet set er resultaterne for forskelle mellem direkte og IT-støtte ikke signifikant, men en tendens i retning af en fordel til indirekte støtte for tilegnelsen af ortografisk viden.

3.6.1.3 Langtidseffekter for stavning

Indeværende studie finder ingen langtidseffekter af deltagergrupper på antal af korrekt stavede ord på en standardiseret staveprøve. Dette resultat er i overensstemmelse med forventningen til dette mål beskrevet i afsnit 3.5.1.

Den ikke-eksisterende langtidseffekt i dette studie kan tolkes som et udtryk for, at børnene i de eksperimentelle grupper træner de samme færdigheder, som børnene i klassen træner, men at tilegnelsen af ny viden i de eksperimentelle grupper går hurtigere, fordi undervisningen er mere intensiv. I så fald bør børnestavning med direkte støtte eller IT-støtte af hvilken, der er effekt på kort sigt, anses som en undervisningsmetode med positiv effekt på børnenes tidlige stavning og dermed som en undervisningsmetode blandt andre evidensbaserede undervisningsmetoder med effekt på stavning.

Det er også muligt, at effekten af børnestavning drukner i al den undervisning og alle de andre forskelle, der over tid påvirker deltagerne i studiet, og derfor ikke kan spores et år efter træningen.

3.6.2 Læsning

Som gennemgået i afsnit 3.3 var hypotesen, at børnenes læsning, ligesom deres stavning, ville have gavn af direkte støtte og IT-støtte, men ikke af indirekte støtte. Denne hypotese afprøves ved at sammenligne hver eksperimentel gruppe med kontrolgrupper og direkte lærerstøtte med de to andre eksperimentelle grupper. Sammenligningen er både baseret på sammenligning af gennemsnit og andelen af elever med fremgang. Resultatet af disse sammenligninger viste:

- En hovedeffekt af deltagergruppe på målet for læsning ved eftertest.
- Signifikant forskel mellem børnestavning med indirekte lærerstøtte og kontrolgruppen.
- Marginal signifikant forskel mellem børnestavning med direkte lærerstøtte og kontrolgruppen.

Der var ingen signifikant forskel mellem børnestavning med IT-støtte og kontrolgruppen. Forskellen mellem direkte støtte og de to andre eksperimentelle grupper var ikke signifikant. For andelen af elever med fremgang var der ingen signifikante forskelle mellem grupper.

Analysens resultater understøttede på den måde ikke hypotesen om en fordel til direkte og IT-støtte over kontrolgruppen og for direkte over indirekte for læsescoren i deltagergrupperne ved eftertest.

Tendensen i data, vurderet ved de justerede gennemsnit og effektstørrelserne, tydede dog på, at den store forskel for læsning ved eftertest var mellem kontrolgruppen og de tre eksperimentelle grupper. For de justerede gennemsnit kan tendensen aflæses i Tabel 3.8. Effektstørrelsen for forskellen mellem kontrolgruppen og hver af de eksperimentelle grupper er alle moderate (d =0,51-0,66). Som belyst i diskussionen af resultatet for stavning er det sandsynligt, at små effektstørrelser i et studie med flere deltagere havde været statistisk signifikante. De moderate, men ikke signifikante effektstørrelser, indikerer, at indeværende studie har for få deltagere til at identificere både små, men også moderate forskelle som signifikante ved multiple parvise sammenligninger.

Selv om forskellen til kontrolgruppen ikke er signifikant for direkte støtte og IT-støtte i indeværende studie, så er tendensen dog meget entydig. Mens effektstørrelsen for forskellen mellem kontrolgruppen og de tre eksperimentelle grupper alle er moderate, indikerede effektstørrelsen for forskellen mellem direkte lærerstøtte og de to andre eksperimentelle grupper forskelle, som var for små til at have betydning d <0,1. De meget små forskelle mellem de eksperimentelle grupper indikerer, at læsning udvikler sig næsten ens
på tværs af typen af støtte. De små forskelle mellem eksperimentelle grupper understøttes af, at der for andelen af elever med fremgang i læsning ikke var signifikante forskelle mellem kontrolgruppen og de eksperimentelle grupper.

Resultatet er ikke i overensstemmelse med hypotesen eller fundene i tidligere studier. En mulig årsag, som er blevet diskuteret tidligere er deltagerantallet i indeværende studie. Med denne forklaring ses forskel mellem kontrolgruppen og alle de eksperimentelle grupper, som udtryk for en reel forskel, som blot ikke bliver signifikant på grund af det relativt lave deltagerantal.

I så tilfælde tyder resultatet på, at effekten på læsning ikke er knyttet til de forskellige typer af støtte og deres betydning for fremgangen i stavning, men er et udbytte af det, undervisningen i de tre eksperimentelle grupper har til fælles, nemlig: gentagen børnestavning af simple ord og en enkelt læsning af disse.

Hvis resultatet derimod reelt afspejler, at indirekte lærerstøtte er den eneste gruppe, som egentlig har fremgang i læsning i sammenligning med kontrolgruppen, så er dette et tegn på, at noget, der var unikt i undervisningen for denne deltagergruppe, var væsentligt for børnenes læsning. En oplagt mulighed er den indirekte støtte, som er den eneste forskel mellem grupperne. Der er ét studie i Tabel 3.1, der undersøger effekten af støtte, der minder om indeværende studies indirekte støtte, i sammenligning med en kontrolgruppe, der deltager i børnehaveklasseundervisning (Levin og Aram, 2013). I Levin og Aram (2013) finder forskerne ingen effekt af denne type undervisning på læsning. Og resultater understøtter ikke den tolkning, at det er noget, som er unikt i undervisningen med indirekte støtte, der er væsentligt for læsning.

Et andet studier har sammenlignet effekten af direkte og indirekte støtte (Rieben m.fl., 2005). Dette studie finder alene effekt på læsning for den direkte støtte i sammenligning med den indirekte støtte og i sammenligning med kontrolgruppen. I det lys er det overraskende, at indeværende studie i sammenligning med kontrolgruppen finder fremgang i læsning af den indirekte støtteform og kun marginalt af den direkte støtte.

Indeværende studier finder, i modsætning til Rieben m.fl. (2005), signifikante forskelle mellem direkte lærerstøtte og kontrolgruppen i de fonologiske aspekter af læsning samt marginalt signifikante forskelle mellem direkte lærerstøtte og kontrolgruppen. En mulig forklaring er den ikke særligt intensive undervisning i Rieben m.fl. (2005) med 18 undervisningsgange over seks måneder sammenlignet med 18 undervisningsgange over seks uger i indeværende studie. En anden mulig forklaring er, at Rieben m.fl.s (2005) børn børnestaver ord med mere komplekse forbindelser mellem sproglyd og bogstaver, end det er tilfældet i indeværende studie. Det er muligt, at de simplicere træningsord gjorde det nemmere for børnene at tilegne sig viden om sammenhængen mellem sproglyde og bogstaver i den type ord, der blev anvendt i indeværende studie. Derfor er det ikke overraskende, at indeværende studie finder forskelle mellem kontrolgruppen og de eksperimentelle grupper på det fonologiske læsemål, men det er forsat.

Et nærmere blik på de ti studier (se Tabel 3.1), der finder effekt på læsemålet, kan måske belyse resultatet. Flere af studierne har dog karakteristika i deres design, som gør det svært at sammenligne resultatet med inderværende studie.

I fire af disse studier kan det ikke afvises, at effekten på læsning skylde, at kontrolgruppen endnu ikke har modtaget egentlig undervisning, som er relevant for udviklingen af læsning (Albuquerque og Martins 2016; Hofslundsgen m.fl., 2016; Martins m.fl., 2013; Martins m.fl., 2016), og samme effekter kunne derfor tænkes at have været opnået med fx systematisk træning af opmærksomhed på sproglyde kombineret med instruktion i bogstaverne og deres lyde (Ehri m.fl., 2001). Dette er ikke tilfældet i inderværende studie (se Figur 3.21). Denne forskel mellem studier i sammenligningsgruppen er væsentlig at kende for at vide, hvad undervisning skal vise effekt ud over.

Forskelle i resultatet mellem studier kan tilskrives mange forskelle mellem studier. En oplagt forskel, som blev berørt i afsnit 3.1.3.1.2, er forskellen på ordene i læseprøverne. Nemmere læseprøver tilbys den forskerne på signifikante effekter og større effektstørrelser for læsning. Forskellen i resultatet i inderværende studie og tidligere studier, kan altså ikke alene forklares af indholdet af undervisningen i den eksperimentelle gruppe, men også i forskelle i læsetesten. Dette eksemplificeres i de tre studier af Ouellette, Sénéchal og eventuelle kolleger (Ouellette m.fl., 2013; Ouellette og Sénéchal, 2008; Sénéchal m.fl., 2012). Forskerne finder effekter på et indlæringsmål, der er følsomt for spirende læsefærdighed. For indlæringsmålet af læsning finder forskerne signifikante og moderate effekter i alle studier (d =0,50 og 0,66). Effektstørrelserne er sammelignelige med dem i inderværende studie for forskellen mellem kontrolgruppen og eksperimentelle grupper, som alle er moderate (d =0,51 og 0,66). En mulig forklaring på, at forskelle i inderværende studie ikke er signifikante, på trods af de sammenlignelige effektstørrelser med studierne af Ouellette, Sénéchal og kolleger (2008, 2012, 2013), er forskellen i den statistiske metode, som anvendes til at sammenligne gruppernes score ved eftertest.

Dette understøtter den tolkning af resultatet, at det, som er årsag til effekten på læsning i inderværende studie, er det, som er ens på tværs af eksperimentelle grupper, snarere end det, der kendetechnisk indirekte lærerstøtte. Resultatet for læsning i inderværende studie skaber i det perspektiv evidens for, at undervisningskombination i studiet fremmer børnenes læsning, men da effekten på læsning ikke følger
mønsteret for effekten på stavning, så er der ikke evidens for, at det er udviklingen i kvaliteten af børnestavning, der skaber en effekt i læsning. Dette er ikke i overensstemmelse med Sénéchals (2017) teori om udviklingen af tidlige skriftsproglige færdigheder, som foreslår (se afsnit 2.2.3) at bedre børnestavning er årsag til bedre læsning. Resultaterne kan dog forstås i lyset af Ehris teori (se afsnit 2.2.1) som et udtryk for at undervisningen med børnestavning har fremmet børnenes viden om det alfabetiske principl. Og denne viden anvendes både i stavning og læsning, men da kvaliteten i børnestavning ikke er årsag til bedre læsning, behøver fremgangen i de to færdigheder ikke være en-til-en.

I et skoleperspektiv er effekterne på læsning væsentlige. De indikerer, at børnestavning, under de rigtige betingelser, er en redskab, som støtter udviklingen af den tidlige læsning positivt. Ligesom tidligere studier finder indeværende studie at effekterne på læsning skal findes i den helt spæde læsning. I indeværende studie havde et læsemål med mindre gulveffekt fx med et par enkelte lettere items, måske ledt til tydeligere effekter i læsning. Fremtidige studier som vil indrage et fonologisk afstandsmål af læsning kan med fordel lave denne justering i målet.

Indeværende studie finder ingen langtidseffekt af læsning. Det eneste studie, som måler langtidseffekt, hvor kontrolgruppen også får samtidig undervisning, som der er evidens for har effekt på læsning (Ouellette m.fl., 2013), finder ikke signifikant effekt på læsning. Den fraværende langtidseffekt af undervisningen tolkes som for stavning (se afsnit 3.6.1.3).

3.6.3 Bogstavkendskab og opmærksomhed på sproglyd
For bogstavkendskab var hypotesen den samme som for stavning og læsning (3.3). Indeværende studie fandt for forskningsspørgsmål 1 og 2 ikke evidens for, at børnene i direkte støtte havde en fordel over indirekte støtte. Endvidere kunne hypotesen om sammenlignelige resultater i direkte støtte og IT-støtte ikke bekræftes, da ingen af grupperne adskilte sig signifikant fra kontrolgruppen.

Indeværende studie fandt hverken en hovedeffekt af deltagergrupper eller signifikante forskelle mellem grupper. Tendensen i data var dog sammenligneligt med kontrolgruppen. En numerisk fordel til direkte lærerstøtte d =0,2, efterfulgt af IT-støtte d=0,37 og dernæst indirekte lærerstøtte d=0,21. Effektstørrelsen for forskellen mellem direkte og indirekte støtte var lille d=0,18, men næsten ikke eksisterende for forskellen mellem direkte støtte og IT-støtte d=0,07.

Den tendens til loftseffekt i målet af børnenes kendskab til bogstavlyd, som var til stede ved førtest, bliver ved eftertest mere tydelig. En mulig konsekvens af loftseffekt er, at de bedste elevers fremgang undervurderes, hvorfor forskellene mellem grupper er i risiko for at blive undervurderet. Det er derfor muligt, at de tendenser, der ses i denne stikprøve, havde været signifikante med et sværere mål af børnenes kendskab til bogstavlyd.

For bogstavkendskab, som måler børnenes kendskab til et afgrænset sæt af bogstaver, er det dog vist i andre studier, at der for danske børn er en loftseffekt på dette mål mod slutningen af børnehaveklassen (Juul, 2005), hvorfor loftseffekten ikke nødvendigvis er en konsekvens af testens design, men i lige så høj grad en konsekvens af karakteristika ved den færdighed, der testes. Som for stavning og læsning er det muligt, at de små effekter med d-værdier mellem 0,3 og 0,4 ville have været statistisk signifikante i et design med flere deltagere.

Det er interessant, at tendensen i data følger resultatet for stavetesten. Dette tyder på en tæt forbindelse mellem de to mål. Tidligere studier har dog også fundet en signifikant fordel til direkte over indirekte støtte. I indeværende studie har forskellene kun tendens til at være forskellige, men er ikke store nok til et
være signifikante med indeværedes studies gruppestørrelse, hvorfor disse tendenser, i et studie med flere deltagere, vil skulle påvises som signifikante.

For børnenes opmærksomhed sproglyd var hypotesen, på baggrund af resultater fra tidligere studier, at der ikke ville være en fordel til de eksperimentelle grupper over kontrolgrupper (se afsnit 3.3). Indeværende studie fandt for forskningsspørgsmål 1 og 2 ikke evidens for forskellen mellem grupperne, for hverken børnenes evne til at danne syntese eller genkende forlyde, vil skulle påvises som signifikante.

Dette understøtter tidligere fund, som på tværs af opmærksomhed på sproglyde er, om kontrolgrupper laver fonologisk træning eller ej (se afsnit 3.1.3.1.3).

Endnu et fund fra tidligere studier, der bliver bekræftet er, at effekten på læsning af børnestavning med støtte ikke alene kan forklares med en positiv udvikling af opmærksomhed på sproglyde (se afsnit 2.3.2).

For syntesefærdighed var effektstørrelserne for alle sammenligninger små (d ≤ 0,25). For børnenes evne til at genkende forlyde var effektstørrelsen for forskellen mellem kontrolgrupper og direkte og indirekte lærerstøtte og mellem de to sidstnævnte alle små (d ≤ 0,05), mens de numerisk største effektstørrelser var for forskellen mellem IT-støtte og direkte støtte samt kontrolgruppen (d = 0,44 og 0,40). Effektstørrelsen for forskellene til IT-støtte indikerer dog, at disse forskelle er væsentligt større. Forskellen er dog ikke stor nok til at være signifikant. Dette kan være knyttet til den tidligere nævnte problematik med deltagerantallet.

Fordelingen i scorere ved eftertest for begge mål af opmærksomhed på sproglyde er påvirket af tendens til loftseffekt. Det kan derfor ikke afvises, at forskelle mellem grupper, særligt for scoren i IT-støtte-gruppen i genkendelsesopgaven, som med et gennemsnit på 7,90 og en standardafvigelse på 2,77 og en maksimalscore på 10 er påvirket af loftseffekt, ville være større med et mere følsomt mål.

Da ingen andre studier har IT-støtte med i deres design, kan denne tendens ikke belyses af fund i tidligere studier, men tendensen passer med den syntetiske stemmes design (se afsnit 3.2.1) og ikke mindst den tendens, der ses i stavetestene til, at den syntetiske stemme i særlig grad træner børnene i at anvende simple fonem-grafem-forbindelser i stavning (se afsnit 3.5.3.2.1.3).

3.6.4 Skriv frit

Den begrænsede danske litteratur om børnestavning kan give det indtryk, at fokus på korrekthed og direkte rettelser kan være ødelæggende for barnets skrivemotivation. Således skriver Korsgaard m.fl. (2010 s. 28):

I opdagende skrivning er der ikke noget der hedder rigtigt eller forkert. Det er et vigtigt udgangspunkt. Hverken i samtalen med børnene, hjemme hos forældre eller blandt velmenende voksne, lige skal vise, hvordan man skriver rigtigt! Sådanne korrektioner kan være ødelæggende for barnets opfattelse af sig selv som skriver.

Ligesom i indeværende studie er Clarke (1988) interesseredet i at besvare om børn, som skriver tekster med korrekt stavning, har et mindre ordforråd eller skriver kortere tekster i sammenligning med børn, som
skriver tekster med børnestavning i klasserum, som vægter fri skrivning med henholdsvis korrekt stavning og børnestavning. Clarke (1988) finder ikke evidens for, at børnenes ordførråd eller den syntaktiske kompleksitet i teksterne er påvirket af, om de har stavet med børnestavning eller korrekt stavning, men finder, at børnestavningsgruppens tekster er længere.

Indeværende studie er begyndende evidens for, at forskellene mellem børnenes tekster ikke påvirkes af, hvilken type støtte, børnene får på deres børnestavning. Der er dog brug for yderligere studier, som bekræfter dette fund.

3.6.4.1 Ordførråd
Børnenes ordførråd blev testet i indeværende studie for at undersøge muligheden for, at forskellene mellem de eksperimentelle grupper og kontrolgruppen kunne forklares som en konsekvens af generelle karakteristika ved studiet, fx små grupper over for klasseundervisning eller forventningseffekter.

Der var dog ingen signifikante forskelle mellem grupper på ordførrådsmålet. Da der var signifikante effekter på stave- og læsemålet, men ikke på ordførrådsmålet, sandsynliggør det at forskellene i stave- og læsemål ikke kan forklares som fx forventningseffekter, men er knyttet til forskelle i undervisningsindholdet i de eksperimentelle grupper og kontrolgruppen.

3.6.4.2 Langtidseffekt
Indeværende studie finder ingen langtidseffekter på hverken læsning eller stavning. Et resultat, der støtter den tolkning, at undervisningen med børnestavning udvikler de samme færdigheder, som udvikles i andre former for undervisning, hvorfor effekterne over tid ikke kan spores. Endvidere anvender indeværende studie standardiserede test, som måler korrekt læsning og stavning af væsentligt mere komplekse ord end dem, der blev trænet i undervisningen. Tilidige studier, som har fundet langtidseffekter, har enten sammenlignet udbyttet af børnestavning med en kontrolgruppe, som endnu ikke får egentlig læseundervisning, eller fundet effekt på et stavemål, som var udviklet af forskerne med ord med samme karakteristika som de trænede ord.

3.6.5 Nye spørgsmål og perspektiver for praksis
Indeværende studie og resultaterne er interessante i en undervisningssammenhæng, da det giver indblik i specifikke måder at arbejde med børnestavning på, som i sammenligning med den almindelige klasseundervisning fremmer kvaliteten af børnenes stavning og læsning uden at påvirke længden af elevernes tekster negativt.

3.6.5.1 Styrker og svagheder i designet
Denne undersøgelses styrke er dens designkarakteristika, som gør, at forskelle mellem deltagergrupperne ikke kan forklares som lærereffekter, klasseeffekter eller forventningseffekter. Dette gør, at resultaterne med større sikkerhed kan tilskrives forskelle i den undervisning, børnene i de eksperimentelle grupper og kontrolgruppen har fået.
En anden styrke er studiets grundige pilotarbejde om ordenes sværhedsgrad, hvilket gav anledning til, at stavetesten og undervisningsordene gennemsnitligt var meget passende i sværhedsgrad. Endnu en styrke er den meget grundige beskrivelse af betingelserne for undervisningen og af talesyntesens designkarakteristika. Dette vil muliggøre, at studie kan gentages.

Undersøgelsen er dog også behæftet med svagheder. En oplagt svaghed i dette studie er, at antallet af deltagere er for lavt til at identificere de små og netop moderate effektstørrelser som statistisk signifikante. Gruppestørrelsen i indeværende studie blev sat efter tidligere studier, og ud fra det kriterie, at effekten på både IT-støtte og indirekte støtte var usikker, hvorfor jeg helst ikke ville udsætte flere børn end nødvendigt for undervisningen. Et fremtidigt studie, der gennemfører sammenligninger mellem forskellige typer af børnestavning, kan på baggrund af effektstørrelsen i indeværende studie trygt inddrage flere deltagergrupper.

Andre svagheder i undersøgelsen er knyttet til testene af opmærksomhed på sproglyde, som godt kunne have haft sværere items, mens testen af læsning, som var scoret som afstanden fra fonologisk acceptabel oplæsning, havde – scoretsmetoden til trods – en tendens til, at mange børn scorede nær maksimum (dårligste score) ved efterret. Denne begrænsning i læsemålet har formentlig været med til at begrænse andelen af børn med fremgang, idet flere børn kan have forbedret deres læsning, uden at skalaen kan måle denne forskel. Den skala, der er brugt til at score børnenes læsning i indeværende studie, vil også kunne anvendes i andre studier, men en læsetest med flere lette items kunne have forbedret læsemålets følsomhed over forbilkede mellem de svageste læsere. Med et sådant læsemål er det muligt, at forskellene mellem kontrolgrupper og de eksperimentelle grupper havde været tydeligere.

Observation af forskningsassistenternes implementering af undervisningen pegede særligt på, at det var direkte lærerstøtte og IT-støtte, hvor enkelte indholdselementer ikke var fuldt imødekommet for enkelte forskningsassisterenter. Dette kan have haft negativ indflydelse på effekten af disse typer børnestavning. Fidelity-scoren er dog generelt høj og indflydelsen vurderer jeg på den baggrund til ikke at være væsentlig. Fidelity-mål er helt afgørende for at vurdere, i hvor høj grad undervisningen er blevet gennemført. Det er derfor et af dette studies styrker, at det har et sådant mål med.

3.6.5.2 Betingelser for effekten

Det er væsentligt at understrege de betingelser, resultaterne for stavning og læsning blev skabt under. For det første var de ord, børnene skrev, i høj grad udvalgt til at være nemmere at segmentere og identificere lyde i. Det kan ikke forventes, at samme resultater kan opnås med ord med mere komplekse fonem-grafem-forbindelser. Faktisk finder Rieben m.fl. (2005) netop ved ord med komplekse forbindelser, at børn, som børnestaver med direkte lærerstøtte, tilegner sig signifikant mere viden om disse forbindelser end børn, der børnestaver med indirekte lærerstøtte. Det er altså muligt, at indirekte støtte ikke kan understøtte børnene i at tilegne sig komplekse forbindelser i indeværende studie går evidensen også i denne retning. Det er muligt, at børnene i indirekte støtte i indeværende studie lærer noget, fordi de simple forbindelser i ordene har gjort det nemmere for børnene at trække viden om de simple fonem-grafem-forbindelser uden direkte støtte.

En betingelse, som kan have haft særlig betydning for resultatet for IT-støtte, var designkarakteristika for den syntetiske stemme. Stemmen var designet til at læse hvert bogstav med et sæt simple fonem-grafem-regler. Resultaterne fra indeværende studie kan altså ikke umiddelbart overføres til syntesen af den art, som omgiver børnene i den danske grundskole (fx IntoWords synteser). Efter at indeværende studie har skabt evidens for effektiviteten af en specialdesignet syntese og tendenserne indikerer, at effekten særlig er fremtrædende for fonologiske mål af stavning, så er det naturligt at efterprøve, om denne syntese
sammenlignet med en syntese, som læser efter andre foreskrifter, i forskellig grad udvikler børnenes evne til at stave ord med simple henholdsvis komplekse fonem-grafem-forbindelser.

Endnu en betingelse, som kendegnegner studiet, er den varighed, intensitet og organisering, som resultaterne er fundet ved. Undervisningen er gennemført af forskningsassisterenter i små grupper uden for klassen over tre dage om ugen i seks uger. Der er derfor ikke evidens for, at samme typer af støtte vil have samme effekt i en klassekontekst. Effekten af børnestavning med direkte støtte og IT-støtte ved forskellige organiseringsmuligheder mangler fortsat at blive belyst.

En betingelse i studiet, som også er væsentlig er, at evidensen i indeværende studie er skabt på baggrund af, at børnene skriver enkelte ord og ikke sammenhængende tekster. Evidensen for effekten af børnestavning ved fri skrivning er begrænset til to studier, hvoraf det ene både har børnestavning i frie tekster og enkeltord. Der er derfor ikke evidens for, at samme typer af støtte vil have samme effekt i børnestavning i frite tekster som ved enkeltord.

En anden betingelse, som kendegnegner indeværende studie, var den faste progression i ordenes sværhedsgrad. Flere af de forskningsassisterenter, der gennemførte undervisningen, rapporterede uformelt tilbage, at de oplevede, at nogle børn havde nemt ved ordene, mens andre oplevede, at ordene blev for svære. Det er muligt, at en adaptiv progression, hvor alle børn skriver fra den samme ordbank, men kun går videre til en mere kompleks ordtype, når han eller hun mestrer den følgende, kan løse denne udfordring. En sådan adaptiv algoritme er afprøvet med succes i Finland og mange andre lande med softwaren Graphogames (fx Saine m.fl., 2013). Det er også muligt, at denne adaptive progression er særlig væsentlig for IT-støtten. En observation, der understøtter dette, er, at flere forskningsassisterenter meldte tilbage, at børnene var mindre selvhjælpne med IT-støtten, når deres egen børnestavning var meget langt fra den korrekte stavning.

Endnu en betingelse, der skal fremhæves, er, at effekterne i indeværende studie er opnået i en gruppe af børn, som ikke havde klassens laveste forudsætninger, og som heller ikke allerede var sikre læsere. For at evidensen om effekten af undervisningen kan udfoldes tilbundehaveklassebørn generelt, er der på den baggrund brug for, at fremtidige studier undersøger effekten af undervisningen i andre grupper af børn.

3.6.5.3 Ubesvarede spørgsmål
Fremtidige studier om udbyttet af undervisning med børnestavning kunne med fordel belyse betydningen af børnenes forudsætninger for udbyttet af undervisningen. I et praksisperspektiv er det væsentligt at kende til, hvilke børn der har glæde af en særlig undervisningsform, særligt hvis fx direkte undervisning er væsentlig for, at elever med meget dårlig førtest-stavning kan udvikle deres stavefærdighed, eller IT-støtte kun kan hjælpe børn med gode forudsætninger. Visuel inspektion af spredningsdiagrammet for før- og eftertest for både den ortografiske og den fonologiske score indikerer dog ikke, at IT-støtte generelt har svært ved at udvikle stavningen hos børn med lave forudsætninger, blot at en enkelt eller to elever med meget ringe stavescore ved førtest ikke har fremgang til eftertest. Den tendens, som kunne undersøges i senere studier, som spredningsdiagrammet indikerer, er, at børnene, som ved førtest har høj stavescore og dermed er mere usikre stavere, i indirekte støtte og kontrolgruppen i højere grad end i IT-støtte og direkte støtte ikke har udbytte af undervisningen. Dette kunne afprøves i en tre-vejs mixed ANOVA med tid som within, deltagergruppe som between og høj eller lav forudsætning som between. Indeværende studie har egentlig data til en sådan analyse, men for lidt power, da deltagergrupperne kun er på 20 i de nuværende analyser, men ville være på 10 i en tre-vejs mixed ANOVA.
Et nærmere kig på spredningsdiagrammet for før- og efterlæsescoren i indeværende studie indikerer, at børnenes førlæsefærdighed er særdeles tæt knyttet til deres fremgang i læsning. Omkring en førtest-score på 140 ændrer spredningen i eftertestscore sig væsentligt, forstået sådan, at ved førtest-score over 140 har ingen førtest-deltagere meget fremgang, uanset deltagergruppe, men under denne score er der stor spredning i fremgangen, uanset deltagergruppe, dog med en tendens til flere børn med mere fremgang i de eksperimentelle grupper. I senere studier kunne det derfor også for læsning være relevant at undersøge interaktionen mellem deltagergruppe og lavere eller højere forudsætninger på børnernes læsescore ved eftertest.

De tendenser, som indeværende studie fandt for børnenes udbytte af undervisningen i relation til simple og komplekse fonem-grafem-forbindelser, kunne også fortjene at blive belyst i endnu et studie, hvor andelen af ord med komplekse versus simple forbindelser belyses i et design med lige mange items af hver type af samme struktur og længde – hvilket ikke var tilfældet i indeværende studie. Endvidere kunne det være interessant at belyse i et studie, som var designet til dette, om forskellen mellem indirekte støtte og direkte støtte øges, når de fonem-grafem-forbindelser, som børnene skal lære, bliver mere komplekse. Dette var et spørgsmål der opstod i gennemgangen af dette studie og tidligere studiers resultater.

For børnene i IT-støtte er det den fonologiske acceptabilitet i stavning, der adskiller dem fra kontrolgrupper, og der, hvor de ligner direkte støtte. Særligt børnene konventionelle stavning af ord med komplekse forbindelser er der tendens i data til, at den støtte, talesyntesen giver, ikke udvikler. Fra dette opstår der nye spørgsmål om, hvordan talesyntesen skal læse børnernes stavemåder for at udvikle deres stavning af ord med komplekse fonem-grafem-forbindelser. Samtidigt er det også interessant, i hvor høj grad ortografians dybde, har betydning for talesyntesen design og rækkevidde. Fx kan man forestille sig, at talesynteser som den i indeværende studie vil kunne støtte børns staveudvikling mere i ortografier med simple fonem-grafem forbindelser, mens støtten kun rækker til at kunne producere fonologisk acceptable stavemåder i dybe ortografier som den danske.

For læsning har alle eksperimentelle grupper en sammenlignelig score ved eftertest. Det er dog kun direkte støtte, der adskiller sig signifikant fra kontrolgrupper, og de estimerede gennemsnit ved eftertest er meget sammenlignelige i alle eksperimentelle grupper. Den egentlige grund til, at det kun er direkte støtte-grupper, som adskiller sig signifikant fra kontrolgrupper, er nok tæt knyttet til deltagerantallet i indeværende studie. Derfor er det væsentligt at bekræfte fundet i indeværende studie i undersøgelser med flere deltagere. Tendensen i studiet er dog klar. Den store forskel er mellem kontrolgrupper og de eksperimentelle grupper. Sympatisk set er effekterne på læsning i sammenligning med kontrolgrupper moderate (d= 0,51-0,66), mens forskellene mellem de eksperimentelle grupper er minimale. Dette indikerer, at det, der er fælles for undervisningen i de tre eksperimentelle grupper, adskiller læsning i disse grupper fra kontrolgrupper med ca. en halv standardafvigelse. Fordi der ikke er forskel mellem grupperne, ser det ikke ud til, at den støtte, som har stor indflydelse på forskellene mellem kontrolgrupper og de eksperimentelle grupper for stavning, har den samme indflydelse på læsning. Dermed kan det se ud til, at det ikke er forbedring i børnestavning, der leder til effekt i læsning, men nærmere, at læsning gavn af det generelle arbejde med sproglyde og bogstaver, som foregår i alle tre grupper. Meget tidligt i udviklingen af læsning og stavning kan det altså se ud til, at læsning kan have gavn af mindre direkte arbejde med børnestavning, mens stavning i større grad har brug for direkte støtte, enten fra en lærer eller en talesyntese.

For forskellen mellem grupper i deres evne til at genkende sproglyde (”Konsonanter”) er effektstørrelsen for forskellene mellem kontrolgrupper og henholdsvis direkte og indirekte støtte også små med d-værdier under 0,05, mens effektstørrelsen for forskellen mellem IT-støtte og kontrolgrupper henholdsvis direkte
lærerstøtte var d = 0,40 og d= 0,44 og dermed af en størrelse, som var for lille, med indeværende studies gruppestørrelse, til at identificere signifikante forskelle, men i et studie med flere deltagere sandsynligvis ville være statistisk signifikante. Tendensen for børnenes evne til at genkende sproglyde er, at gruppen, som har skrevet med IT-støtte, lærer mere om dette end de andre grupper. En tendens, hvis den er mere end tilfældig, der understøtter den tolkning af børnenes stavning ved eftertest i IT-støtten særligt adskiller sig fra kontrolgruppen ved den fonologiske acceptabilitet i utrænede ord. Det er dog overraskende, at denne fordel i evnen til at genkende sproglyde ikke afspelser sig i, at IT-støtten staver utrænede ord fonologisk mere acceptabelt end direkte lærerstøtte. Der er derfor ikke fuldstændig entydige tendenser på tværs af dette mål og det fonologiske stavemål, og det er derfor også muligt, at tendensen til en fordel til IT-støtte på dette mål blot er tilfældig. Der er fortsat brug for studier, der bekræfter og belyser udbytte af undervisning med børnestavning for opmærksomhed på sproglyd.

3.6.5.4 Til børnehaveklasselederen

For børnehaveklasselederen, som gerne vil inddrage børnestavning i undervisningen, danner indeværende studie i en dansk kontekst for første gang evidens for, at børnestavning i sammenligning med børnehaveklasseundervisningen kan udvikle kvaliteten af børnenes stavning. Dette er tilfældet, når børnene børnestaver med direkte lærerstøtte og IT-støtte, og kvaliteten af stavningen vurderes på, hvor fonologisk acceptabel den er. For børnehaveklasselederen, som ønsker at udvikle den konventionelle korrekthed i børnenes stavning af ord med andet end simple-fonem-grafem-forbindelser, finder dette studie alene evidens for, at børnestavning med direkte støtte kan dette. Evidensen for, at børnestavning fremmer læsning, er mere begrundet og kun signifikant for børnestavning med indirekte lærerstøtte. De to andre støtemåder har sammenligneligt, men lidt mindre effekt på læsning, hvilket er et tegn på, at det er det undervisningen har til fælles på tværs af eksperimentelle grupper, der skaber effekt: gentagen børnestavning af lette ord, adgang til korrekt stavning og oplæsning sammen med den voksne.

Den specialudviklede IT-støtte fremmer de fonologiske aspekter af stavning – en effekt, der stemmer overens med det formål, der er indlejet i syntesens design. Dermed bekræfter resultatet for indeværende studie effektiviteten af talesyntesens design, da studiet finder, at oplæsning faktisk træner børnene i at anvende det alfabetiske princip i stavning. Resultatet for IT-støtte understøtter, at talesyntesen har potentielle som støtte under børnestavning.

For læreren, som gerne vil implementere IT-støtte, er det væsentligt at holde sig for øje, at IT-støtten i inderværende studie var specialdesignet og effektiviteten ikke er vist for de kommercielle synteser, som ofte er til rådighed på skolerne. I et praksisperspektiv vil et træningsstudie, som implementerer talesyntesen i undervisningen med undervisning gennemført af læreren være nødvendig for at kende den effekt, læreren vil kunne forvente i en klassesituation.

De betingelser, resultaterne er fundet under, er væsentlige at holde sig for øje, da effekten ikke blot kan overføres til andre betingelser. Væsentlige betingelser i inderværende studie er den støtte, børnene børnestaver med, de ord, børnene staver, organiseringen i små grupper, varigheden og underviserens kompetencer. Hvis disse faktorer ændres, er det væsentligt at understrege, at resultaterne fra dette studie ikke nødvendigvis kan generaliseres til de nye betingelser.

Studiet er på den måde endnu et skridt på vejen til at skabe evidens for, hvordan børnenes egne staveforsøg kan inddrages i undervisningen og danne udgangspunkt for at udvikle kvaliteten af børnenes stavning og læsning. Selvom effekterne i læsning er mindre klare i dette studie, er det væsentligt, at tendensen er entydig til fordel for de eksperimentelle grupper, hvilket indikerer, at undervisning med børnestavning skubber læsningen i den rigtige retning.
4 Studie 2. Børnestavning og tidlig læsning i bh. kl. og 1. kl.

I dette kapitel præsenterer jeg Studie 2 og baggrunden for studiet. Studie 2 tager sit udgangspunkt i evidensen om sammenhængen mellem børnestavning og tidlig læsning og senere stave- og læsefærdighed, som kort er præsenteret i afsnit 2.3.2. Fra denne gennemgang blev det tydeligt, at det ikke er entydigt, om børnestavning og tidlig læsning er unikke prædiktorer af senere læsning og stavning. Denne manglende entydighed i resultaterne på tværs af studier er udgangspunktet for Studie 2.

Kapitlet er opbygget af to dele. Først præsenterer jeg en systematisk litteraturnemgang af studier, der undersøger som minimum børnestavning, men også, i nogle studier, tidlig læsning som unikke prædiktorer af senere stave og læsning. Litteraturnemgangens sigte er at skabe et overblik over resultaterne i disse studier og de betingelser, resultaterne er fundet under, da disse måske kan forklare forskelle i resultater på tværs af studier. Jeg har særligt blik for betingelserne scoringsmetoder, gulveffekter og børnenes skoleerfaring. Dernæst præsenterer jeg på baggrund af litteraturnemgangen i anden del en langtidsundersøgelse af sammenhængen mellem 92 danske børnehaveklassebørns børnestavning og tidlige læsning og deres stavning og læsning i 1. kl. Denne undersøgelse sammenligner for to scoringsmetoder styrken af sammenhængen mellem børnestavning og staving i 1. kl., og tidlig læsning og læsning i 1. kl. Sammenligningen sker med en scoringsmetode baseret på, om børnennes tidlige staving/læsning er korrekt eller ikke korrekt, og en scoringsmetode baseret på fonologisk acceptabilitet. Om den første bruges også betegnelsen binær ortografisk score og om anden fonologisk afstandsscore eller fonologisk score. Endvidere undersøges det unikke bidrag fra børnestavning og tidlig læsning med den fonologiske score til senere staving og læsning. Resultaterne fra Studie 2 diskuteres i lyset af teorierne om bagvedliggende færdigheder i udviklingen af staving (se afsnit 2.2) samt resultaterne fra studierne i litteraturnemgangen (se afsnit 4.1).

4.1 Litteraturnemgang, Studie 2

Med det formål at få et systematisk indblik i eksisterende resultater om tidlig stave- og læsefærdighed evne til at forudsige senere stave- og læsefærdighed ud over bidraget fra andre kendte tidlige prædiktorer (som minimum opmærksomhed på sproglyde) har jeg identificeret 12 langtidsstudier, der undersøger sammenhængen mellem børnestavning og evt. tidlig læsning samt senere staving og læsning. Resultaterne fra Studie 2 diskuteres i lyset af teorierne om bagvedliggende færdigheder i udviklingen af staving (se afsnit 2.2) samt resultaterne fra studierne i litteraturnemgangen (se afsnit 4.1).

4.1.1 Inklusionskriterier

Potentielle studier er identificeret via en litteratursøgning i databasen LLBA med følgende søgeord: (invented OR emergent OR early OR skill*) AND (spelling OR word writ*) AND (early literacy skill* OR phon* aware* OR letter knowl* OR alphabet* knowl* OR alphabet* princip*) AND (longitudi* OR correlat*) AND (kindergarten* OR pre kindergarten OR pre school OR first grade) med følgende filtre slået til: fagfællebedømt tidsskriftsartikel, artikelsprog: engelsk. På baggrund af gennemlæsning af abstracts blev studier inkluderet ud fra følgende kriterier: korrelationsundersøgelse med to eller flere dataindsamlingstidspunkter, kvantitative mål af tidlige skriftsproglige competencer, herunder som minimum mål af børnestavning som prædiktor af enten staving, læsning eller begge. Studier der både har børnestavning og tidlig læsning som prædiktorvariable medtages også. Studierne skal inddrage andre kendte prædiktorer af læsning og staving, som minimum opmærksomhed på sproglyde. Målene af børnestavning og tidlig læsning er enten indsamlet i før-børnehaveklassen, børnehaveklassen eller i 1. kl. og forudsiger staving og/eller læsning minimum et kvart år senere.

 Ved tvivlstilfælde blev studiet udvalgt til gennemlæsning af metodeafsnittet og på grundlag heraf blev udelukket eller inkluderet. Studiernes litteraturlister og studier der henviste til udvalgte studier blev gennemgået for oversette studier og vurderet efter samme kriterier, som studierne fundet via litteratursøgningen. Ud over
Disse studier har jeg også inkluderet et endnu ikke-publiceret studie (Treiman m.fl., i manus). Studiet overholder samtlige udvælgelseskriterier på nær, at det endnu ikke er fagfællebedømt eller udgivet. Jeg har studiet med, da det som det eneste af studierne har rigtigt mange deltagere med n=970. Datasættet, der danner grundlag for studiet, er endvidere publiceret i tidligere udgivne og fagfællebedømte artikler (fx Hulslander m.fl., 2013).

De 12 studier, som på baggrund af denne litteratursøgning blev udvalgt til litteraturgennemgangen, er listet i tabellen herunder (Tabel 4.1).

Tabel 4.1
Oversigt over resultatet i studier, der undersøger børnestavning og evt. tidlig læsning som unikke prædiktorer af senere stavning og/eller læsning.

<table>
<thead>
<tr>
<th>Tidlig Stavning</th>
<th>Senere Stavning</th>
<th>Ja</th>
<th>Nej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caravolas, Hulme og Snowling, 2001</td>
<td>Lazo, Pumfrey og Peers, 1997<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénéchal, 2017</td>
<td>Shatil, Share og Levin, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouellette og Sénéchal, 2017</td>
<td>Spector, 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost, 2001<sup>b</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tidlig Læsning</th>
<th>Senere Læsning</th>
<th>Ja</th>
<th>Nej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treiman m.fl., i manus</td>
<td>Lazo, Pumfrey og Peers, 1997<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénéchal, 2017</td>
<td>Caravolas, Hulme og Snowling, 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouellette og Sénéchal, 2017</td>
<td>Shatil, Share og Levin, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan, McBride-Chang, Shu, Liu, Zhang og Li, 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tidlig Stavning</th>
<th>Senere Læsning</th>
<th>Ja</th>
<th>Nej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treiman m.fl., i manus</td>
<td>Lazo, Pumfrey og Peers, 1997<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caravolas, Hulme og Snowling, 2001</td>
<td>Caravolas, Hulme og Snowling, 2001<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénéchal, 2017</td>
<td>Ouellette og Sénéchal, 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouellette og Sénéchal, 2017</td>
<td>Lazo, Pumfrey og Peers, 1997<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim og Petscher, 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: I kolonnen "nej" gælder resultatet for alle deltagere med mindre andet er angivet med en note.

^aikke de yngste børn.

^bikke børn med lav opmærksomhed på sproglyde.

4.1.2 Betingelser
Formålet med litteraturgennemgangen er at præsentere resultaterne, klarlægge eventuelle modsatrettede fund og identificere eventuelle tendenser i de betingelser, resultaterne er fundet under, og vurdere, om disse kan forklare eventuelle modsatrettede fund. Der er mange forskelle mellem studier, men jeg har udvalgt tre betingelser, som alle er knyttet til, hvordan målene af børnestavning, tidlig læsning samt senere stavning og læsning måler.

1. Forskelle i scoringsmetode. Scoringsmetoder varierer på tværs af studierne i Tabel 4.1 og kan være en kilde til forskelle i resultaterne på tværs af studier.

Samtidig bidrager gennemgangen med et overblik over deltagerantal og antallet samt typen af prædiktorer, som de spirende færdigheder skal forklare variation ud over. Et studie med få deltagere og mange prædiktorer er nemlig i risiko for at overse unikke bidrag fra de enkelte prædiktorer, som i en større stikprøve ville have bidraget unikt. En tommerfingerregel for stikprøvens størrelse, når en analyse skal undersøge, om en overordnet models forudsigelse er signifikant, er at have et minimumsdeltagerantal på 50 plus otte gange antallet af prædiktorer. Hvis også de enkelte prædiktorers bidrag skal vurderes, så er en tommerfingerregel en stikprøvestørrelse på minimum 104 plus antallet af prædiktorer (VanVoorhis og Morgan, 2007). Endvidere er det muligt, at tilstedeværelsen af bestemte prædiktorer, som børnestavning og/eller spirende læsning skal forklare variation ud over, påvirker resultaterne på tværs af studier.

Motivationen for fokus på betingelserne scoringsmetode og gulveffekt udfoldes i de to næste afsnit.

4.1.2.1 Om scoringsmetode

På tværs af studier i Tabel 4.1 bruger forskerne forskellige metoder til at score den tidlige læsning og stavning. Scoringsmetoderne er, i nogle studier, baseret på, hvor fonologisk acceptable stavemåderne er, i andre studier på ortografisk kvalitet. I de fleste studier er det ortografiske mål binært (korrekt/ikke korrekt), men ét studie har et ikke-binært ortografisk mål baseret på, hvor korrekte stavemåderne er. Det er muligt, at de ikke entydige resultater kan tilskrives, at nogle scoringsmetoder er bedre end andre til at forudsige unik variation i senere stave- og læsefærdighed. Derfor er scoringsmetoder en af de betingelser, jeg har fokus på i litteraturgennemgangen.

Både fra et teoretisk og et praksisperspektiv kan viden om bestemte scoringsmetoders overlegenhed som prædiktorer bidrage med væsentlig indsigts.

4.1.2.1.1 Teoretisk perspektiv

Fra et teoretisk perspektiv er spørgsmålet væsentligt, fordi overlegenhed af en scoringsmetode kan pege i retning af, hvilken variation det er væsentligt at indfange i tidlig stavning og læsning, for at målet er en unik prædiktor af senere stavning og læsning. Det er sandsynligt, at de mål, der har den stærkeste forbindelse til senere stave- og læsefærdighed, er følsomme for tidlige forskelle mellem børnene, som er væsentligere for senere stave- og læsefærdighed, end de forskelle, som de andre mål er følsomme for. Hvis fx mål, der er følsomme for forskelle i, hvor fonologisk acceptabel en stavemåde er, er bedre end ortografiske mål, så indikerer det, at forskelle i børnenes tidlige fonologiske færdigheder er væsentligst for forudsigelsen af senere læsning og stavning. Styrken af sammenhængen mellem tidlige og senere færdigheder kan på den måde bidrage til forståelsen af, hvilken viden børn bruger som omdrejningspunkt i udviklingen af stave- og læsefærdighed.

Ehri (fx 2005) (se afsnit 2.2.1) har i sin teori om udviklingen af præcise ortografiske repræsentationer peget på tilnegojen af det alfabetiske princip som den centrale drivkraft i udviklingen af stave- og læsefærdighed. Sénéchal (2017) (se afsnit 2.2.3) vægter ligeledes det alfabetiske princip men peger på integrationen af opmærksomhed på sproglyde og viden om sammenhængen mellem bogstav og lyd i børnestavning som central for udviklingen af læsning. Treiman og Kessler (2014) (se afsnit 2.2.2) peger i teorien Integration of Multiple Patterns (IMP) på, at børn allerede tidligt i udviklingen af deres stavefærdighed, ud over deres viden om sammenhængen mellem bogstav og sproglyd, bruger viden om tale- og skriftsprogets ydre form som motivation for deres stavemåder.
Sammenligning af scoringsmetoder er før blevet brugt til at sandsynliggøre et teoretisk ståsted. I en sammenligning af flere scoringsmetoder viser Treiman m.fl. (2016; 2019), at ortografiske scoringsmetoder er stærkere forbundet til senere stavning end scoringsmetoder baseret på, hvor fonologisk acceptabel en stavemåde er. Forskerne konkluderer, at de ortografiske måls overlegenhed skyldes, at de indfanger forskelle mellem børnene i deres viden om skriftens ydre form, fx ortografiske konventioner for bestemte ord eller bestemte positioner i et ord, og at forskelle i denne viden er væsentligt for senere stavning.

Overlegenhed af én scoringsmetode over en anden er på den måde blevet brugt som en indikation af, hvad der i børnestavning er væsentligst, og informerer os i forhold til det teoretiske spørgsmål om væsentligheden af det alfabetiske princip og børnenes viden om andre mønstre i talesproget og ortografien.

De tendenser, der identificeres på tværs af studier, kan danne grudlag for nye studier, designet til at belyse netop disse tendenser. Indeværende studie støtter sig af den grund op ad tendenserne på tværs af studierne i formuleringen af forskningsspørgsmålene og studiets design.

4.1.2.1.2 Praksis- og teoretisk perspektiv

En anden teoretisk og praksisinteresse er, om spirende stave- og læsefærdighed kan forklare unik variation i senere stave- og læsefærdighed ud over kendte prædiktorer som opmærksomhed på sproglyde og bogstavkendskab. Dette er der ikke entydig evidens for (se Tabel 4.1) og børnestavning er af flere forskere blevet beskrevet som produktet af disse færdigheder (Mann, 1993; Mann m.fl., 1987; McBride-Chang og Ho, 2005). Hvis børnestavning og tidlig læsning faktisk meget tidligt i udviklingen forklarer unik variation i senere stave- og læsefærdighed, så tyder det på, at disse færdigheder er væsentlige i sig selv for senere stave- og læsefærdighed.

I et teoretisk perspektiv er det interessant, om den unikke variation alene kan tilskrives forskelle mellem børnene i deres viden om skriftens ydre karakteristika, som fx hyppige bogstaver eller bogstavfølger, eller om også anvendelse af det alfabetiske princip i læsning og stavning har betydning ud over opmærksomhed på sproglyde og bogstavkendskab. Hvis børnenes viden om skriftens ydre karakteristika er væsentlig, må ortografiske scoringsmetoder være bedre prædiktorer end fonologiske scoringsmetoder, fordi kun førstnævnte metoder kan indfange disse forskelle. Hvis børnenes udyttelse af det alfabetiske princip i læsning og stavning er væsentlig, må fonologiske scoringsmetoder være unikke prædiktorer ud over opmærksomhed på sproglyde og bogstavkendskab.

I et praktisisperspektiv er viden om tidlig læsning og stavnings unikke bidrag til senere stave- og læsefærdighed væsentlig for at vurdere, om det er meningsfuldt at inddrage disse mål i vurderingen af tidlige skriftsprøgle færdigheder og på den måde forbedre forudsigelsen af senere færdigheder. En bedre forudsigelse er af praktisk interesse, da den kan understøtte, at vi bedre kan udpege børn i risiko for at udvikle vanskeligheder i læsning og stavning. Dette er væsentligt, da disse børn kan hjælpes af en tidlig indsats (se fx metaanalyserne ved Ehri m.fl., 2001; Suggate, 2010).
4.1.2.2 Om gulveffekt

For at belyse gulveffekt systematisk har jeg valgt at markere, om fordelingen af scorer i et studie på et givent testtidspunkt er mildt, svært eller ikke påvirket af gulveffekt. Denne kategorisering har jeg lavet på baggrund af gennemsnittet og standardafvigelsen. En fordeling er i denne litteraturgennemgang mildt påvirket af gulveffekt, hvis gennemsnittet minus standardafvigelsen ikke er mere end 20 % under minimumsscoren, og svært påvirket af gulveffekt, hvis det er mere end 20 % under minimumsscore. Det samme gør sig gældende, men omvendt for loftseffekt.

I analysen af gulveffekt er jeg opmærksom på, at gulveffekt og børnenes alder/klassetrin nok er relaterede mål. Målene af tidlig læsning og børnestavning vil blandt yngre børn med mindre skoleerfaring højst sandsynligt være påvirket af gulveffekt.

4.1.3 Sammenligning af studier

I det følgende gennemgås de fire typer af forudsigelse, som studierne i Tabel 4 belyser. Først gennemgås studier, hvor tidlig læsning er prædiktor for senere læsning, dernæst studier, hvor tidlig læsning er prædiktor af senere stavning. Herefter gennemgås studier, hvor børnestavning forudsiger senere stavning, og sidst studier, hvor børnestavning er prædiktor af senere læsning.

4.1.3.1 Tidlig læsning som prædiktor af senere læsning

De seks studier, der forudsiger senere læsning fra tidlig læsning, er listet med detaljer om deltagerantal, deltagernes alder/klassetrin ved måletidspunktet, scoringsmetode, minimums- og maksimumsscore, gennemsnitsscoren for deltagergruppen, standardafvigelsen, andre prædiktorer, som tidlig læsning skal forklare variation ud over, og om tidlig læsning forklarer unik variation i senere læsning (se Tabel 4.2).

Af de seks studier, der undersøger om tidlig læsning forudsiger unik variation i senere læsning finder fem, at dette er tilfældet (se Tabel 4.2). I det sjette studie finder Lazo m.fl. (1997), at den tidlige læsning i starten af børnehaveklassen (5;2) bidrager unikt til forudsigelsen af læsning i slutningen af børnehaveklassen (5;7), mens den tidlig læsning i slutningen af før-børnehaveklassen (4;6) ikke forklarer unik variation i læsning i starten af børnehaveklassen.
Tabel 4.2

Resultater og betingelser i studier, der forudsiger senere læsning fra tidlig læsning.

<table>
<thead>
<tr>
<th>Studie</th>
<th>Prædiktorer</th>
<th>Andre</th>
<th>Outcome</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caravolas, m.fl., (n=153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>Min/ max</td>
<td>M (SD)</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0/54</td>
<td>23.00(26.40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>0/10</td>
<td>1.53(3.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>0/90</td>
<td>10.40(11.46)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim og Petscher, 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/60</td>
<td>11.67(17.53)</td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>0/60</td>
<td>20.73(16.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lazo, m.fl., 1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0/56</td>
<td>0.00(0.00)</td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>0/14</td>
<td>0.00(0.00)</td>
</tr>
<tr>
<td>Ouéllette og Sénéchal, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/10</td>
<td>2.10(2.09)</td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénéchal, 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/5</td>
<td>1.0(1.3)</td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/5</td>
<td>2.4(1.8)</td>
<td>SG</td>
</tr>
<tr>
<td>Treiman, m.fl., (n=171)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/54</td>
<td>96.28(10.61)^h</td>
<td>6;2/sBK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>103.76(10.72)^i</td>
<td>6;2/sBK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>103.76(10.72)^i</td>
<td>6;2/sBK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>103.76(10.72)^i</td>
<td>6;2/sBK</td>
</tr>
</tbody>
</table>

Note. Sproget i studiet er engelsk medmindre andet er markeret. SM=scoreningsmetode, Min/ max=skalaens laveste og højeste score, M=gemensnitt, SD=standardafvigelse, G=gulveffekt, kl.=klasse, n=deltagerantal, F=fonologisk baseret score, O=ortografisk binær score, OB=ortografisk ikke-binar score, SS=standardscore, TG=tendens til gulveffekt, MG=mild gulveffekt, SG=stærk gulveffekt, bBK=beginnelsen af børnehaveklassen, mBK=midten af børnehaveklassen, sBK=slutningen af børnehaveklassen, bÅK=beginnelsen af år x (x=årgang), mÅK=midten af år x, sÅK=slutningen af år x, SBK=slutningen af forr-børnehaveklassen, BL=bogstavlyd, BN=bogstavnavn, OF=ordforslag, OP=opmærksomhed på sproglige, PO=pragmatisk opmærksomhed, RAN=hurtig seriel benævnelse, SO=syntaktisk opmærksomhed, TO=tekst-opmærksomhed.
^h: kun når det tidlige mål er binært forskellig.
^i: ikke rapporteret.
^a: læsning.
^b: læsning.
^c: læsning.
^d: læsning.
månedes senere (Tabel 4.2). I dette studie skulle der altså ikke meget variation til i den tidlige læsning, før end denne kunne forklare unik variation i fonologisk korrekt læste ord.

Gennemsnit og standardafvigelse i de resterende studier i Tabel 4.2 viser samme tendens i starten og midten af børnehaveklassen. Målet af tidlig læsning har et gennemsnit i den lavere ende af det pågældendes studies læsemål. Samtidig er standardafvigelsen i alle studierne højere end gennemsnittet, hvilket indikerer, at fordelingen af score for børnenes tidlige læsning er påvirket af gulveffekt (se afsnit 4.1.2.2). Vurderet ved dette kriterium er samtlige mål af tidlig læsning op til midten af børnehaveklassen påvirket af gulveffekt, men forudsiger, dette til trods, unik variation i senere læsefærdighed.

Det kan således se ud som om, at tidlig læsning, så snart målet kan indfange nogen variation i børnenes spirende læsefærdigheder, kan bidrage unikt til forudsigelsen af senere læsning. En mulig konklusion er at tidlig læsning først kan forudsige unik variation i senere læsning, når børnene er begyndt at få læseundervisning og flere børn dermed begynder at kunne læse simple ord.

4.1.3.1.2 Scoringsmetode

Fordi evidensen er begrænset til få studier, er det ikke sikkert at konkludere, at tidlig læsning scoret med en ortografisk scoringsmetode er en bedre prædiktor af senere læsning end tidlig læsning scoret med en fonologisk scoringsmetode.

4.1.3.1.3 Andre betingelser

En anden betingelse, hvor forskelle mellem studier kunne være væsentlig, er typen af de andre prædiktorer, som tidlig læsning skal forklare variation i senere læsning ud over. Begge studier inkluderer...
dog de samme to centrale prædiktorer (opmærksomhed på sproglyd og tidlig stavning), så forskellen i resultatet kan mere sandsynligt forklares med forskelle i antallet af deltagere.

4.1.3.1.4 Opsamling
Ortografiske mål af tidlig læsning forklarer unik variation i senere læsning, så snart der blot er nogen variation i fordelingen af score. Mål af tidlig læsning uden variation kan – ikke overraskende – ikke forudsige unik variation i senere læsning.

Grundlaget for at vurdere fordelen af en scoringsmetode over en anden for tidlig læsning som unik prædiktor af senere læsning er med to studier meget sparsomt, og på tværs af disse er resultaterne modsatrettede for den fonologiske scoringsmetode. En mulig forklaring på forskellen i resultatet er forskellen i antallet af deltagere i de to studier.

Det er brug for mere viden, om tidlig læsning med fonologiske scoringsmetoder, og om de faktisk er bedre til at forklare unik variation i senere læsning, hvis målet ikke i for høj grad er påvirket af gulveffekt, eller om ortografiske scoringsmetoder reelt har en fordel.

Hvis den ortografiske score faktisk indfanger variation, der er væsentlig for senere læsning, og som ikke indfanges af det fonologiske mål, så understøtter det, at børnenes evne til at læse ord korrekt meget tidligt i udviklingen af læsning er væsentligere for deres senere læsning end blot deres evne til at anvende det alfabetiske princip i læsning.

Hvis den ortografiske score derimod ikke har en egentlig fordel over den fonologiske score, men tendensen på tværs af studier blot er tilfældig eller afspejler forskelle mellem studierne, som jeg ikke har identificeret, så er det muligt, at den fonologiske score har en fordel. En fordel til den fonologiske score ville afspejle, at det væsentligst, som tidslige læsemål kan indfange, alene er forskelle i børnenes evne til at anvende det alfabetiske princip i læsning. Dette ville understøtte teoretiske syn på udviklingen af læsning, som vægter viden om det alfabetiske princip som den centrale tidlige færdighed, børnene skal tilegne sig for at blive sikre læsere (Ehri, 2005) (se afsnit 2.2.1).

4.1.3.2 Tidlig læsning som prædiktor af senere stavning
Af de 12 udvalgte studier undersøger fire (Caravolas m.fl., 2001; Lazo m.fl., 1997; Ouellette og Sénéchal, 2017; Sénéchal, 2017) om tidlig læsning er en unik prædiktor af senere stavning.

På den måde ser resultaterne om tidlig læsnings betydning for senere stavning uklare ud. Forskellene mellem studierne i relation til gulveffekt og scoringsmetoden for læse- eller stavemålene kan måske tilbyde en forklaring på, hvorfor nogle studier finder, at tidlig læsning bidrager unikt til senere stavning, mens andre ikke finder dette.
Tabel 4.3
Resultater og betingelser i studier, der forudsiger senere stavning fra tidlig læsning.

<table>
<thead>
<tr>
<th>Studie</th>
<th>Prædiktorer</th>
<th>Outcome</th>
<th>SM</th>
<th>Min/ max</th>
<th>M (SD)</th>
<th>G</th>
<th>Alder/ kl.</th>
<th>SM</th>
<th>Min/ max</th>
<th>M (SD)</th>
<th>G</th>
<th>Alder/ kl.</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caravolas m.fl., 2001</td>
<td>F</td>
<td>0/54</td>
<td>23.00(26.40)</td>
<td>MG</td>
<td>5;1/mBK</td>
<td>BL, BN, OP, stavf/O</td>
<td>0</td>
<td>100</td>
<td>53.71(27.85)</td>
<td>5;7/sBK</td>
<td>F:Nej<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sénéchal (2017)</td>
<td>O</td>
<td>0/10</td>
<td>1.53(2.32)</td>
<td>SG</td>
<td>5;7/sBK</td>
<td>F</td>
<td>0</td>
<td>100</td>
<td>77.92(19.92)</td>
<td>TL</td>
<td>6;1/Å1</td>
<td>F:Nej<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/90</td>
<td>10.40(11.46)</td>
<td>MG</td>
<td>5;7/sBK</td>
<td>O</td>
<td>0</td>
<td>97</td>
<td>38.67(24.43)</td>
<td>O</td>
<td>S</td>
<td>O:Ja</td>
<td></td>
</tr>
<tr>
<td>Ouellette og Sénéchal, 2017</td>
<td>O</td>
<td>0/56</td>
<td>0.00(0.00)</td>
<td>SG</td>
<td>4;6/sBK</td>
<td>F</td>
<td>0</td>
<td>56</td>
<td>10.30(13.00)</td>
<td>SG</td>
<td>5;2/mBK</td>
<td>F:Nej<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/14</td>
<td>3.38(7.31)</td>
<td>SG</td>
<td>5;2/mBK</td>
<td>F</td>
<td>0</td>
<td>56</td>
<td>21.33(19.54)</td>
<td>7;3/Å1</td>
<td>O:Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lazo m.fl., 1997</td>
<td>O</td>
<td>0/56</td>
<td>0.00(0.00)</td>
<td>SG</td>
<td>4;6/sBK</td>
<td>F</td>
<td>0</td>
<td>56</td>
<td>10.30(13.00)</td>
<td>SG</td>
<td>5;2/mBK</td>
<td>F:Nej<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(n=60)</td>
<td>O</td>
<td>0/14</td>
<td>0.41(1.00)</td>
<td>SG</td>
<td>5;2/mBK</td>
<td>F</td>
<td>0</td>
<td>56</td>
<td>21.33(19.54)</td>
<td>7;3/Å1</td>
<td>O:Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouellette og Sénéchal, 2017</td>
<td>O</td>
<td>0/10</td>
<td>2.10(2.09)</td>
<td>SG</td>
<td>5;6/mBK</td>
<td>BL, BN, OP, stavf</td>
<td>0</td>
<td>12</td>
<td>2.75(2.77)</td>
<td>MG</td>
<td>6;6/Å1</td>
<td>O:Nej</td>
<td></td>
</tr>
<tr>
<td>(n=171)</td>
<td>O</td>
<td>0/45</td>
<td>1.38(2.70)</td>
<td>SG</td>
<td>5;6/mBK</td>
<td>BL, BN, OP, stavf</td>
<td>0</td>
<td>12</td>
<td>2.75(2.77)</td>
<td>MG</td>
<td>6;6/Å1</td>
<td>O:Nej</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/56</td>
<td>0.00(0.88)</td>
<td>SG</td>
<td>5;6/mBK</td>
<td>BL, BN, OP, stavf</td>
<td>0</td>
<td>12</td>
<td>2.75(2.77)</td>
<td>MG</td>
<td>6;6/Å1</td>
<td>O:Nej</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0/14</td>
<td>0.41(1.00)</td>
<td>SG</td>
<td>5;6/mBK</td>
<td>BL, BN, OP, stavf</td>
<td>0</td>
<td>12</td>
<td>2.75(2.77)</td>
<td>MG</td>
<td>6;6/Å1</td>
<td>O:Nej</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ouellette og Sénéchal, 2017</td>
<td>O</td>
<td>0/10</td>
<td>1.00(1.3)</td>
<td>SG</td>
<td>5;5/mBK</td>
<td>Alder, BN, OP, stavf</td>
<td>0</td>
<td>6</td>
<td>0,5(0,9)</td>
<td>6;3/Å1</td>
<td>O:Ja</td>
<td></td>
</tr>
<tr>
<td>(n=107)</td>
<td>O</td>
<td>0/56</td>
<td>1.00(1.3)</td>
<td>SG</td>
<td>5;5/mBK</td>
<td>Alder, BN, OP, stavf</td>
<td>0</td>
<td>6</td>
<td>0,5(0,9)</td>
<td>6;3/Å1</td>
<td>O:Ja</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Sproget i studiet er engelsk medmindre andet er markeret. SM= scoringsmetode, Min/max= skalaens laveste og højeste score, M=gennemsnit, SD=standardafvigelse, G=gulveffekt, kl.=klasse, n=deeltagerantal, F=fonologisk baseret score, O= ortografisk binær score, S5= standardscore, TG=tendens til gulveffekt, MG=mild gulveffekt, SG=stærk gulveffekt, TL=tendens til loftseffekt, bBK=begyndelsen af børnehaveklassen, mBK=midten af børnehaveklassen, sBK= slutningen af børnehaveklassen, bÅK=begyndelsen af år x (x=årgang), mÅK=midten af år x, sÅK= slutningen af år x, sFBK= slutningen af før-børnehaveklassen, BL=bogstavlyd, BN=bogstavnavn, OF=ordforråd, OPS= opmærksomhed på sproglyde, PO= pragmatisk opmærksomhed, RAN= hurtig seriel benævnelse, S0= syntaktisk opmærksomhed, TO= stavelses-opmærksomhed, TO=teks-opmærksomhed.

^akun når det tidligere mål er fonologisk baseret.

^bikke rapporteret.

4.1.3.2.1 Gulveffekt

Dette afsnit undersøger forskelle mellem studierne i forhold til gulveffekt i målet af tidlig læsning.

Sénéchal (2017) finder også, at et mål af tidlig læsning i midten af børnehaveklassen forklarer unik variation i senere stavning. Dette finder hun til trods for, at målet på en skala fra et til fem har et gennemsnit på 1,0

På tværs af studier ser der således ud til at være en sammenhæng mellem målet af tidlig læsnings evne til at skelne mellem svage læsere, vurderet ved gulveffekt, og dets evne til at forudsige unikke forskelle i senere stavning. Tidlig læsning uden gulveffekt forklarer unik variation i senere stavning, og når målet af tidlig læsning er påvirket af gulveffekt, ser graden af gulveffekt ud til at have betydning for, hvorvidt tidlig læsning forklarer unik variation i senere stavning. Tendensen er, at med mindre gulveffeektken større chance for at tidlig læsning er unik prædiktor af senere stavning.

4.1.3.2.2 Scoringsmetode
Den ovenstående analyse af sammenhæng mellem tidlig læsning og senere stavning har set bort fra betydningen af scoringsmetode for stave- og læse målene. Forskelle i scoringsmetode belyses i dette afsnit.

Ingen studier, der finder, at tidlig læsning er en unik prædiktor af senere stavning, bruger en fonologisk scoringsmetode. Der er altså kun evidens for, at tidlig læsning med ortografiske scoringsmetoder kan forklare unik variation i senere stavning (Caravolas m.fl., 2001; Lazo m.fl., 1997; Sénéchal, 2017). Det er dog ikke alle studier, der måler tidlig læsning med et ortografisk mål, der finder, at denne færdighed forklarer unik variation i senere stavning (Ouellette og Sénéchal, 2017). I studier med flere måletidspunkter er det også kun ved nogle af disse, at det ortografiske mål af tidlig læsning er en unik prædiktor af senere stavning (Caravolas m.fl., 2001; Lazo m.fl., 1997).

Endvidere er der snubleråde i tolkningen af scoringsmetodernes betydning. De fonologiske mål af læsning bliver kun brugt blandt børn, der højt går i midten af børnehaveklassen, og derfor kan årsagen til, at de fonologiske mål af læsning ikke forudsiger senere stavning, mens det ortografiske mål gør, ikke identificeres entydigt. Skyldes det gulveffeekt eller en reel fordel til det ortografiske over det fonologiske mål? Men hvis det ortografiske mål af tidlig læsning reelt har en fordel over det fonologiske, når tidlig læsning skal forklare
unik variation i senere stavning, så er en mulig tolkning af denne fordel til en ortografisk scoringsmetode, at det ikke alene er børnenes mestrings af det alfabetiske princip, der er centralt for udviklingen af stavefærdighed. Den ortografiske scoringsmetode er en bedre prædiktor, fordi den er fælles for noget "mere". Det vil betyde, at det er væsentligt for senere stavning, at børnene læser kys [køs] og ikke [kys]. I den tolkning har den ortografisk scoringsmetode en fordel over den fonologiske, fordi den både kan indfange børnenes viden om det alfabetiske princip og om andre mønstre i skriften ydre form. I Treiman og Kesslers (2014) teori om udviklingen af stavning IMP (2.2.2) fremhæver forskerne bag teorien netop, at børnene allerede tidligt bruger deres kendskab til skriftsprogets ydre form, og at dette understøtter udviklingen af stavning sammen med viden om det alfabetiske princip. En fordel til den ortografiske scoringsmetode ville indikere, at også tidlige læsemål med en ortografisk score er bedre end en fonologisk score til at forklare forskelle i senere stavning, fordi de er fælles som for flere relevante forskelle i børnenes tidlige læsning.

Evidensen for, at et ortografisk læsemål er en bedre prædiktor end et fonologisk mål, kan dog ikke entydigt tolkes som en fordel til ortografiske mål. I forhold til Ehris (2005) teori om udviklingen af præcise ortografiske repræsentationer er tilgængeligheden af det alfabetiske princip central for udviklingen af sikker afkodning og stavning. I dette perspektiv er det forventeligt, at et mål af tidlig læsning med en fonologisk scoringsmetode er en bedre prædiktor, da målet tidligt er fælles for forskelle mellem børnene i deres forståelse af det alfabetiske princip, førstend de kan læse ord korrekt.

Fremtidige studier kan bidrage ved at skabe mere evidens for betydningen af forskellene i den fonologiske og ortografiske kvalitet af børnenes tidlige læsning for senere stavning.

4.1.3.2.3 Andre betingelser
Som for læsnings forudsigtel af læsning, så er der forskelle mellem studier i deltagerantal (se afsnit 4.1.3.1.3). Der er muligt, at denne forskel er årsag til, at resultaterne i Lazo m.fl. (1997) og Caravolas m.fl. (2001) adskiller sig fra hinanden. Forskelle mellem studierne i typen af de andre prædiktorer, som tidlig læsning skal forklare variation ud over, er her, som når tidlig læsning forudsiger senere læsning (se afsnit 4.1.3.1.3), ikke relevant. Forskellen i resultatet i studierne kan på den baggrund mere sandsynligt forklares af andre forskelle.

4.1.3.2.4 Opsamling
Samspillet mellem betingelserne scoringsmetode, målenes gulveffekt eller klassetrin skaber tre tendenser for resultatet i de fire studier.

1. Tidlig læsning med en ortografisk score kan, når den ikke i for høj grad er påvirket af gulveffekt, forklare unik variation i senere stavning.
2. Tidlig læsning, som i høj grad er påvirket af gulveffekt forklarer ikke unik variation i senere stavning, uanset scoringsmetode.
3. Tidlig læsning med en score baseret på fonologisk acceptabelt læste lyde, som er påvirket af gulveffekt, kan ikke forklare unik variation i senere stavning.

I lyset af disse forskelle mellem studierne er resultaterne mindre tvetydige. Der er dog fortsat ubesvarede spørsmål, som fremtidige studier kan belyse. Et relaterer sig til, om de fonologiske mål virkelig ikke kan forklare unik variation i senere stavning? Der er nemlig kun evidens i ét studie for, at antallet af korrekt læste ord er tættere knyttet til senere stavning end antallet af fonologisk acceptabelt læste lyde. En fordel til ortografiske mål ville være i overensstemmelse med Treiman og Kesslers (2014) teori om udviklingen af stavning, der netop værger, at børnene tidligt i udviklingen af stavning ikke alene bruger viden om sproglyde og bogstaver, men også viden om andre mønstre i ortografien (se afsnit 2.2.2).
Omvendt kan tendensen til at tidlig læsning ikke forklare unik variation i senere stavning, når målet er meget påvirket af gulveffekt kan tyde på, at tidligt i udviklingen i læsning, mens få børn kan læse ord korrekt, så bidrager tidlig læsning ikke ud over opmærksomhed på sproglyde, bogstavkendskab og børnestavning til senere stavning. Dette passer med Sénéchal (2017) som fremhæver, at når børnene bliver læsere, så er denne færdighed det, der forudsiger senere korrekt læsning og stavning, men før dette tidspunkt er det kvaliteten i børnenes børnestavning, der forudsiger senere stave- og læsefærdighed.

Disse tendenser er væsentlige at efterprøve, fordi eventuel overlegenhed af en ortografisk scoringsteknik over en fonologisk kan belyse, i hvor høj grad ikke alene det alfabetiske princip, men også det, der er unikt for børnenes evne til at læse ord korrekt, er væsentlig at identificere i test af tidlig læsning for at forudsige senere stavning unikt.

4.1.3.3 Børnestavning som prædiktor af senere stavning

I de ni studier, der undersøger om børnestavning er en unik prædiktor af senere stavning, er resultaterne på tværs af studier ikke entydige (se Tabel 4.4).

4.1.3.3.1 Gulveffekt

Når børnestavning er en unik prædiktor af senere stavning, er målet af børnestavning i to studier ikke påvirket af gulveffekt (Caravolas m.fl., 2001; Ouellette og Sénéchal, 2017), meget mildt påvirket af gulveffekt i ét studie (Sénéchal, 2017), mildt påvirket i ét studie (Frost, 2001) og meget påvirket af gulveffekt i to studier (Lazo m.fl., 1997; Kim og Petscher, 2011).

Når børnestavning ikke er en unik prædiktor af senere stavning, er der kun ét studie, der har et mål af børnestavning, som er upåvirket af gulveffekt (Shatil m.fl., 2000), ét hvor målet af børnestavning er meget mildt påvirket af gulveffekt (McBride-Chang, 1998), ét med mild gulveffekt i målet af børnestavning (Spector, 1992) og to hvor børnestavning er meget påvirket af gulveffekt (Lazo m.fl., 1997; Frost, 2001).

Gulveffekt i stavemålet ser på den måde ikke ud til at kunne tilbyde en entydig forklaring på forskellene på tværs af studier. Der er dog tendenser inden for studier med flere måletidspunkter og på tværs af studier, der indikerer, at gulveffekt på målet af børnestavning har betydning for målets evne til at forklare unik variation i senere stavning. I Lazo m.fl. (1997) finder forskerne, at stavemålet med lavest gennemsnit og standardafvigelse 1,83 (4,05) ikke er en unik prædiktor af senere stavning, mens stavemålet med højere gennemsnit og standardafvigelse 10,30 (13,00) er. På begge tidspunkter er målet af børnestavning stærkt påvirket af gulveffekt, men mindre på det ene tidspunkt end det andet. Frost (2001) sammenligner, om børnestavning kan forklare unik variation i senere stavning hos børn med lav henholdsvis høj fonologisk opmærksomhed. For gruppen af børn med høj fonologisk opmærksomhed er målet af børnestavning med
Tabel 4.4
Resultater og betingelser i studier, der forudsiger senere stavning fra børnestavning.

<table>
<thead>
<tr>
<th>Studie</th>
<th>PRAEDIKTORER</th>
<th>ANDRE</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bernestavning</td>
<td></td>
<td>Senere stavning</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>Min/ max</td>
<td>M (SD)</td>
</tr>
<tr>
<td>Caravolas m.fl., 2001 (n=153)</td>
<td>F</td>
<td>0/100</td>
<td>37.57(25.10)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0/100</td>
<td>53.71(27.85)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0/100</td>
<td>38.67(24.43)</td>
</tr>
<tr>
<td>Frost, 2001 (n=44) (dansk)</td>
<td>F</td>
<td>1/8</td>
<td>3.19(2.32)</td>
</tr>
<tr>
<td>Kim og Petscher, 2011 (n=215) (koreansk)</td>
<td>O</td>
<td>0/60</td>
<td>1.09(2.21)</td>
</tr>
<tr>
<td>Lazo m.fl., 1997 (n=60)</td>
<td>F</td>
<td>0/56</td>
<td>1.83(4.05)</td>
</tr>
<tr>
<td>Ouellette og Sénéchal, 2017 (n=171)</td>
<td>F</td>
<td>0/60</td>
<td>29.29(13.48)</td>
</tr>
<tr>
<td>Shatil m.fl., 2000 (n=306) (israelsk)</td>
<td>F</td>
<td>1/12</td>
<td>4.79(2.92)</td>
</tr>
<tr>
<td>Spector, 1992 (n=38)</td>
<td>F</td>
<td>0/42</td>
<td>10.67(10.92)</td>
</tr>
</tbody>
</table>

Note. Sproget i studiet er engelsk medmindre andet er markeret. SM=scoreningsmetode, Min/max=skalaens laveste og højeste score, M=gennemsnit, SD=standardafvigelse, G=gulveffekt, kl.=klasse, n=deltagerantal, F=fonologisk baseret score, O=ortografisk binær score, SS=standardscore, TG=tendens til gulveffekt, MG=mild gulveffekt, SG=stærk gulveffekt, TL=tendens til loftseffekt, ML=mild loftseffekt, bBK=begyndelsen af børnehaveklassen, mBK=midten af børnehaveklassen, sBK=slutningen af børnehaveklassen, bÅ=x:beginning of age x (x=årgang), mÅ=x:midten of age x, sÅ=x:slutningen of age x, sFBK=slutningen af før-børnehaveklassen, BK=bogstavlyd, BN=bogstavnavn, OF=ordforråd, OPS=opmærksomhed på sproglyde, PO=pragmatisk opmærksomhed, RAN=hurtig seriel benævnelse, SO=syntaktisk opmærksomhed, STO=stavelses-opmærksomhed, TO=tekst-opmærksomhed.

*a) kun når det tidlige mål er fonologisk baseret.
*b) kun når det tidlige mål er fonologisk baseret.
*c) børn med høj opmærksomhed på sproglyde.
*d) børn med lav opmærksomhed på sproglyde.
*Scoren er lavet om til et kategorimål med to kategorier.

en minimumsscore på 1,0 en gennemsnitsscore på 3,19 og en standardafvigelse på 2,32 mildt påvirket af gulveffekt. For gruppen af børn med lav fonologisk opmærksomhed er målet af børnestavning med en gennemsnit på 1,61 og en standardafvigelse på 0,92 meget påvirket af gulveffekt. Børnestavning er kun en unik prædiktor af senere stavning i gruppen af børn, der er mindst påvirket af gulveffekt. På den måde

Selvom graden af gulveffekt i målene af børnestavning ikke tilbyder en entydig forklaring, er der på baggrund af tendenser i studier med måltidspunkter eller deltagergrupper, hvor målet af børnestavning er mere eller mindre påvirket af gulveffekt, støtte til, at gulveffekt påvirker målet af børnestavnings mulighed for at være en unik prædiktor negativt. Endvidere finder studier med mål af børnestavning, som er upåvirket af gulveffekt, at børnestavning er en unik prædiktor af senere stavning. Det er dog en forudsætning, at målet af børnestavning har en skala, der alene skelner i kvaliteten af bogstavbaserede staveforsøg.

4.1.3.3.2 Scoringsmetode

Som det fremgår af ovenstående kan forskelle på tværs af studier og inden for studier i graden af gulveffekt på målene af børnestavning i nogen grad forklare forskellene i studiernes resultater, men der er stadig modsatrettede fund.

For målet af senere stavning er der tre studier, der bruger en fonologisk scoringsmetode (Caravolas m.fl., 2001; Lazo m.fl., 1997; Spector, 1992), seks studier bruger en binær ortografisk score (Caravolas m.fl., 2001; Frost, 2001; McBride-Chang, 1998; Kim og Petscher, 2011; Ouellette og Sénéchal, 2017; Sénéchal, 2017), og ét studie bruger begge scoringsmetoder samtidigt (Caravolas m.fl., 2001). For senere stavning er den dominerende scoringsmetode dermed ortografisk. Dette mål er jo også særlig interesserant at forklare variation i, da endemålet for børnene er tilgængelsen af sikker stavefærdighed.

Den dominerende scoringsmetode for børnestavning er altså en anden, end den for senere stavning. Det betyder, at flere studier bruger forskellige scoringsmetoder til at score tidlig og senere stavning. To studier bruger et ortografisk mål for både tidlig og senere stavning (Tabel 4.4), tre studier bruger et fonologisk baseret mål for både tidlig og senere stavning (Tabel 4.4), og fem studier bruger et fonologisk mål til at forudsige senere korrekt stavning (Tabel 4.4).

Caravolas m.fl. (2001) skal børnestavning forklare variation ud over opmærksomhed på sproglyde, bogstavkendskab (navn og lyd), læsning og stavning opgjort som antal korrekt stavede ord. I Sénéchal (2017) ligner prædiktorerne dem i Caravolas m.fl. (2001), men børnestavning skal ikke forklare variation i senere stavning ud over et andet mål af børnestavning, som det er tilfældet i Caravolas m.fl. (2001). De to stavemål i Caravolas m.fl. (2001) er stærkt korreleret r=0,78, hvilket betyder, at målene har meget fælles variation, men da det ortografiske mål er stærkere forbundet til senere stavning r=0,76 end det fonologiske mål r=0,52, er det ikke overraskende, at det fonologiske mål ikke kan forklare unik variation i senere stavning ud over det ortografiske mål. Derfor er det i sammenligning mellem Caravolas m.fl. (2001) og Sénéchal (2017) ikke overraskende, at sidstnævnte i modsætning til førstnævnte finder, at børnestavning, til trods for mild gulveffekt, forklarer unik variation i senere stavning.

I Sénéchal (2017) og McBride-Chang (1998) er de prædiktorer, som børnestavning skal forklare variation ud over mere, forskellige, så det er meget usikkert, om det er denne forskel, der kan forklare, at det ene studie finder, at børnestavning er en unik prædiktor, og det andet ikke gør.

4.1.3.3.3 Opsamling
Forskelle på tværs af studier i scoringsmetode kan altså ikke isoleret set forklare forskelle i resultater, men sammen med gulveffekt, antallet af deltagere og typen af prædiktorer, så træder der nogle tendenser frem for de betingelser, under hvilke børnestavning er en unik prædiktor af senere stavning.
1. I studier, hvor målet af tidlig og senere stavning er ortografiske, er børnestavning en unik prædiktor, uanset om målet af børnestavning er påvirket af gulveffekt eller ej.

2. I to af tre studier, hvor målet af børnestavning og senere stavning er fonologiske, er børnestavning en unik prædiktor, når målet ikke i for høj grad er påvirket af gulveffekt.

3. I fire af fem studier, hvor målet af børnestavning er fonologisk og målet af senere stavning er baseret på korrekt hed, er børnestavning en unik prædiktor, når dette mål
 a. er upåvirket af gulveffekt
 b. er meget mildt påvirket af gulveffekt, men kun skal forklare unik variation ud over opmærksomhed på sproglyde, bogstavkendskab og læsning, men ikke ud over endnu et mål af børnestavning
 c. er mildt påvirket af gulveffekt, men kun skal forklare unik variation ud over opmærksomhed på sproglyde.

Resultaterne understøtter på den måde, at børnestavning kan forklare unik variation i senere stavning, og at både graden af gulv- og loftseffekt i børnestavning, scoringsmetoderne, antallet og typen af prædiktorer og antallet af deltagere i studiet kan have betydning for, om børnestavning er en unik prædiktor af senere stavning.

Analysen på tværs af studier ser på den måde ud til at tilbyde en delvis forklaring på de modsatrettede resultater i Tabel 4.4, som dermed mere entydigt kan underbygge, at børnestavning forklarer unik variation i senere stavning under visse betingelser. Disse betingelser er et indblik i mulige forhold, der har betydning for, hvor tæt et mål af børnestavning er knyttet til et senere stavemål.

To resultater indikerer, at ortografiske mål af tidlig stavning har en fordel over fonologiske mål, når senere korrekt stavning skal forudsiges. Det ene resultat er, at de to studier (Caravolas m.fl., 2001; Kim og Petscher, 2011), der scorer tidlig stavning ortografisk, begge finder, at denne er en unik prædiktor. Det andet resultat er fra Caravolas m.fl. (2001), som finder, at det – i midten af 1. kl. – er det ortografiske mål, der er en unik prædiktor, når både et fonologisk og et ortografisk mål af børnestavning skal forklare unik variation i senere stavning. På dette tidspunkt er det ortografiske mål ikke påvirket af gulveffekt, mens det fonologisk mål er mildt påvirket af loftseffekt. Det er dog uklart, om fordelen til det ortografiske mål i studiet af Caravolas m.fl. (2001) skyldes, at det ortografiske mål faktisk er en bedre prædiktor af senere korrekt stavning end det fonologiske mål, eller om fordelen til det ortografiske mål skyldes forskelle i loftseffekt.

Hvis fordelen til ortografiske scoringsmetoder er reel, indikerer det, at tidlige mål af stavning skal kunne indfange ikke blot forskelle i børnenes anvendelse af det alfabetiske princip, men også deres udnyttelse og deres kendskab til andre mønstre i skriftsprogets ydre form. Et sådant resultat ville være i overensstemmelse med Treiman og Kessles (2014) teori om udviklingen af stavning (se afsnit 2.2.2).

For at komme tættere på fordelen af en scoringsmetode over en anden, så kan fremtidige studier, specifikt designet til at sammenligne styrken af sammenhængen mellem forskellige scoringsmetoder og senere korrekt stavning, belyse, om fonologiske scoringsmetoder for meget tidlige stavere er en bedre prædiktor end ortografiske scoringsmetoder. Dette er centralt for at belyse, om den væsentligste forbindelse mellem børnestavning og senere stavning er i børnenes udnyttelse af skrifte lydprincip i stavning, eller om også forskelle mellem helt tidlige stavere, som kun indfanges af ortografiske mål er væsentlig for forudsigelsen af senere stavning.
4.1.3.3.1 Scoringsmetode og børnestavnings sammenhæng med senere stavning

Spørgsmålet om, hvorvidt fonologiske eller ortografiske mål er tættest knyttet til senere stavning, nuanceres i to studier af Treiman og kolleger (2016, 2019), som sammenligner styrken af sammenhængen mellem tidlig stavning, scoret med forskellige ortografiske og fonologiske mål, og senere stavning. Resultaterne fra disse sammenligninger underbygger, at scoringsmetoden samt tilstøtedeværelsen af gulveffekt eller loftseffekt i målene af børnestavning hænger sammen med, hvor stærkt de er forbundet til senere stavning. I ingen af de to studier forklarer målene af børnestavning dog variation i senere stavning ud over andre relevante prædiktorer, og derfor er studierne ikke en del af Tabel 4.4 og litteraturgennemgangen. De gennemgås dog i det følgende, da de tilbyder en meget direkte indsigt i sammenhængen mellem scoringsmetoder, gulveffekt og styrken af sammenhængen mellem tidlig og senere stavning.

I Treiman m.fl. (2016) bliver 347 amerikanske og australske børnehaveklassebørns stavning af 10 enstavelsesord scoret på otte forskellige måder. For hver scoringsmetode bliver der beregnet en korrelationskoefficient, der udtrykker, hvor stærkt målet af børnestavning er knyttet til korrekt stavning i slutningen af 2. kl. To scoringsmetoder er binære. Den ene er ortografisk, den anden fonologisk. Seks scoringsmetoder er ikke-binære. To af disse er ortografiske og er dels bogstavseksensens grad af korrekthed og dels en afstandsscore som den, der blev præsenteret i forbindelse med Studie 1 (3.4.3.1.1). Tre af de ikke-binære scoringsmetoder er fonologiske og er dels antallet af korrekt repræsenterede fonemer, uden at tage højde for bogstavrækkefølgen, dels en afstandsscore og dels endnu en afstandsscore, der ignorerer forkert rækkefølge af bogstaverne og ekstra bogstaver. De sidste ikke-binære scoringsmetode er et blandet mål af stavning, der scorer korrekt stavning med flest point og derefter tildeler lavere score ved færre antal fonologisk acceptable bogstaver i barnets stavemåde. Treiman m.fl. (2016) finder, at de binære ortografiske mål af børnestavning er signifikant tættere knyttet til korrekt stavning i 2. kl. end det binære fonologiske mål (r=0,62 og r=0,55, z=3,47, p<0,001, to-halet). De fonologiske scoringsmetoder er med korrelationskoefficienter mellem 0,48 og 0,55 generelt svagere end de ortografiske mål, der har korrelationskoefficienter mellem 0,62 og 0,63, mens det blandede mål placerer sig imellem med en korrelationskoefficient på 0,57. De mål, der forklarer mest variation i senere stavning, er to ortografiske mål.

For de ikke-binære scoringsmetoder betyder det, at fonologiske mål, der nærmer sig en loftseffekt, måske i mindre grad end ortografiske mål, der ikke nærmer sig loftseffekt, kan skelne mellem kvaliteten af de bedste staveres spirende staveforsøg. Det kan derfor ikke afvises, at den større andel af variation, som de
ortografisk ikke-binære stavemål forklarer i senere stavning, delvist kan forklares med, at disse mål er upåvirkede af lofteffekter.

Én sammenhæng understøtter dog, at de ortografiske mål har en fordel over de fonologiske, som ikke blot kan forklares med gulv- eller lofteffekter. Denne sammenhæng består i, at det binære ortografiske mål forklarer mere variation i senere stavning end det fonologisk binære mål, selv om det ortografiske mål med et gennemsnit på M=3,17(2,58) placerer sig tættere på skalaens nulpunkt end det fonologiske mål M=4,72(3,01). Dermed er tendensen til gulveffekt i de binære mål størst i det mål, der forklarer mest variation i senere stavning. Dette understøtter, at ortografiske mål faktisk er følsomme for forskelle mellem børnene, som forklarer en større andel af variation i senere stavning end fonologiske mål, fordi tendensen også er der, når det ortografiske mål, som er sværere påvirket af gulveffekt, forsatt er stærkest forbundet til senere stavning.

På baggrund af disse data finder Treiman og kolleger (2019) i overensstemmelse med Treiman m.fl. (2016), at tidlig stavning målt midt i 1. kl. bedst forklarer stavning i 2. kl., hvis scoringsmetoden for tidlig stavning er antal korrekt stavede ord (r=0,75). Treiman m.fl. (2019) finder også en generel fordel til ortografiske mål (r=0,61-0,75) over de fonologisk mål (r=0,55-0,64). Et mønster, der også gør sig gældende, når børnestavning måles i slutningen af børnehaveklassen. Måles børnestavning allerede i midten af børnehaveklassen, så har det binære ortografiske mål ikke længere en fordel (r=0,51). I midten af børnehaveklassen er børnestavning stærkest forbundet til stavning i 2. kl., når scoringsmetoden er en ikke-binær ortografisk (r=0,57) eller fonologisk afstandsscore (r=0,56). For børn, der ikke staver nogen ord korrekt i midten af børnehaveklassen (n=86), er den ikke-binære fonologiske afstandsscore tættest forbundet til stavning i 2. kl. (r=0,49). Det samme gør sig gældende for børn, der ikke staver nogen ord korrekt i slutningen af børnehaveklassen (n=41, r=0,48). Mulige forklaringer på dette mønster kan være, at der ved svagere stavere er en fordel til fonologisk ikke-binære mål, da disse mål er bedre til at skelne mellem svage staveres score, fordi de er mindre påvirket af gulveffekt blandt svage stavere end det ikke-binære og det binære ortografiske mål. En anden mulighed er, at blandt meget usikre stavere, så er deres evne til at integrere deres fonologiske opmærksomhed og deres bogstavkendskab i stavning væsentligere

for forudsigelsen af senere stavning end deres viden om andre mønstre i tale- og skriftsprogets ydre form. I
den tolkning er fonologiske mål for disse svage stavere en bedre prædiktor end ortografiske mål. For den
samlede gruppe af børn er der dog på intet tidspunkt en klar fordel til fonologisk ikke-binære mål og
allerede i slutningen af børnehaveklassen og i særdeleshed i midten af 1. kl. er binære ortografiske mål
stærkest forbundet til stavning i 2. kl. Dette støtter, at forskelle i stavefærdigheder, som indfanges af
ortografiske mål, ret tidligt i udviklingen af stavning er væsentlige for forudsigelsen af senere stavning.

Den deskriptive statistik og styrken af sammenhængen mellem spirende og senere stavning i Treiman og
kollegaer (2019) understøtter tanken om, at styrken af sammenhænge mellem et mål af børnestavning og
senere stavning påvirkes af gulv- og loftseffekter i målet af børnestavning. I midten af børnehaveklassen er
de ord, børnene skal stave, generelt svære for børnene, uanset scoringsmetode. De binære mål er påvirket
af gulveffekt, uanset om de er ortografiske M=0,06(0,13) eller fonologiske M=0,11(0,21), og de kan dermed
ikke skelne mellem børn i den lave ende af skalaen. Allerede ved slutningen af børnehaveklassen har begge
mål et numerisk højere gennemsnit, hvilket indikerer, at tendensen til gulveffekt er mindsket i begge de
binære mål. Styrken af sammenhængen mellem det tidlige mål af stavning og senere stavning er da også
numerisk stærkere i slutningen af børnehaveklassen end i midten af børnehaveklassen. Dette mønster,
hvor mindre gulveffekt og stærkere forbindelse mellem tidlig og senere stavning er knyttet, ses igen, når
børnestavning i midten af 1. kl. skal forudse senere stavning. Her er ingen af de binære mål påvirket af
gulv- eller loftseffekt, og styrken af sammenhængen mellem tidlig og senere stavning er på dette tidspunkt
numerisk stærkere end mellem børnestavning i slutningen af børnehaveklassen og senere stavning.
Børnernes stavning måles med 96 ord, der varierer fra ord, der er lette at stave, fx sun, til sværere ord med
morer komplesse forbindelser mellem bogstav og lyd, fx dwarf. Testen indeholder relativt mange lette
items, hvilket giver anledning til, at fordelingen af score allerede i midten af børnehaveklassen kun er mildt
påvirket af gulveffekt.

De to ikke-binære mål, der er scoret som afstand mellem barnets stavning og den konventionelle
stavemåde eller en fonologisk acceptabel stavemåde, er ikke påvirket af gulveffekt i hverken
børnehaveklassen eller 1. kl. Til gengæld nærmer det ikke-binære fonologiske mål sig loftseffekt fra
slutningen af børnehaveklassen og er påvirket af loftseffekt i midten af 1. kl. Der synes igen at være en
systematisk sammenhæng mellem mere loftseffekt og mindre stærk sammenhæng mellem tidlig og senere
stavning.

For begge de binære mål er det dog klart, at uanset gulv- og loftseffekt har ortografiske scoringsmetoder en
fordel over den fonologiske. For de ikke-binære mål er målene generelt sammenligneligt stærkt forbundet
til senere stavning. Blandt de svageste stavere er hverken det ikke-binære ortografiske mål eller det
fonologiske mål påvirket af gulv- eller loftseffekt. Her er det dog det fonologiske mål, der har den numerisk
stærkeste sammenhæng med senere stavning.

Treiman m.fl. (2016) tolker de ortografiske måls fordel som støtte til den begyndende evidens for, at selv
små børn, før de kan stave konventionelt, lægger mærke til og husker andre mønstre knyttet til
skriftsproget end dem mellem bogstaver og sproglyde (Cassar og Treiman, 1997; Martinet, Valdois, og
Fayol, 2004; Treiman og Kessler, 2014; Wright og Ehri, 2007). En logisk konsekvens af dette er, at den
scoringsmetode, et studie anvender til at måle børnestavning med, er væsentlig for styrken af
sammenhængen mellem tidlig og senere stavning, da væsentlig variation i børnenes tidlige opmærksomhed
på skriftens ydre karakteristika indfanges med ortografiske mål af stavning, men ikke med fonologiske mål.

Dette syn finder i nogen grad støtte i resultaterne fra studier, der undersøger, om børnestavning forklarer
unik variation i senere stavning (Tabel 4.4), da de studier, der undersøger den ortografiske score, entydigt
finder, at den bidrager unikt til forudsigelsen af senere stavning. Evidensen er dog begrænset til to studier, da de resterende studier kun undersøger den fonologiske score. Disseinder dog ikke en tyndigst, at tidlig stavning er en unik prædiktor af senere stavning.

Der er på den baggrund behov for flere studier, der undersøger det unikke bidrag fra tidlig stavning til senere stavning med det formål at belyse, om bestemte scoreringsmetoder på forskellige tidspunkter i udviklingen forklarer unik variation i senere færdighed. Det er dog en udfordring at sammenligne forskellige scoreringsmetoder i samme regressioner, da de ofte er stærkt korreleret, og der dermed kan opstå problemer med multikollinearitet (Field, 2013). Dette kommer også til udtryk i studiet af Caravolas m.fl. (2001), som finder, at det kun er det ortografiske mål, ud af både et ortografisk og fonologisk mål, som forklarer unik variation i senere stavning, selvom begge mål egentlig har moderat stærke forbindelser til senere stavning.

4.1.3.4 Børnestavning som prædiktor af senere læsning

Hvorvidt børnestavning er en unik prædiktor af senere læsning bliver belyst af 11 studier (Tabel 4.5). Resultaterne på tværs af studier er ikke entydige.

Forskellene mellem studierne i relation til gulveffekt og scoreringsmetoden for læse- og/eller stavemålene kan måske også for sammenhængen mellem børnestavning og senere læsning tilbyde en forklaring på de modstridende fund i Tabel 4.5.

4.1.3.4.1 Gulveffekt

Når børnestavning er en unik prædiktor af senere læsning, er målet af børnestavning ikke påvirket af gulveffekt i fire studier (Caravolas m.fl., 2001; Ouellette og Sénéchal, 2017; Sénéchal, 2017; Treiman m.fl., i manus), meget mildt til mildt påvirket af gulveffekt i fem studier (Frost, 2001; Gilbertson og Bramlett, 1998; McBride-Chang, 1998; Pan m.fl., 2011; Sénéchal, 2017), mens ét studie finder, at et mål af børnestavning, der er mere påvirket af gulveffekt, er en unik prædiktor af senere læsning (Lazo m.fl., 1997).

Når børnestavning ikke er en unik prædiktor af senere læsning, er der to studier, der har et mål af børnestavning, som er upåvirket af gulveffekt (Shatil m.fl., 2000; Caravolas m.fl., 2001), ét hvor målet af børnestavning er meget mildt påvirket af loftseffekt (Caravolas m.fl., 2001), ét med mild gulveffekt i målet af børnestavning (Spector, 1992) og tre, hvor børnestavning er meget påvirket af gulveffekt (Frost, 2001; Lazo m.fl., 1997; Sénéchal, 2017).
Tabel 4.5 Resultater og betingelser i studier, der forudsiger senere læsning fra børnestavning.

<table>
<thead>
<tr>
<th>Prædiktorer</th>
<th>Børnestavning</th>
<th>Andre</th>
<th>Outcome</th>
<th>Senere læsning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Min/ max</td>
<td>M (SD)</td>
<td>G</td>
<td>Alder/ kl.</td>
</tr>
<tr>
<td>Caravolas m.fl., 2001 (n=153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/100</td>
<td>37.57(25.10)</td>
<td>5;1/mBK</td>
<td>BL, BN, OPS, læsO</td>
</tr>
<tr>
<td>F</td>
<td>0/100</td>
<td>53.71(27.85)</td>
<td>5;7/sBK</td>
<td>6;1/mA1</td>
</tr>
<tr>
<td>F</td>
<td>0/100</td>
<td>77.92(19.92)</td>
<td>TL</td>
<td>104.22(18.20)</td>
</tr>
<tr>
<td>O</td>
<td>0/97</td>
<td>38.67(24.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frost, 2001 (n=44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(dansk)</td>
<td>F</td>
<td>1/8</td>
<td>1.61(0.94)</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1/8</td>
<td>3.19(2.32)</td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbertson, Bramlett, 1998 (n=91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/21</td>
<td>3.00(3.20)</td>
<td>MG</td>
<td>6;7/bY1</td>
</tr>
<tr>
<td>Lazo m.fl., 1997 (n=60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/56</td>
<td>1.83(4.05)</td>
<td>SG</td>
<td>4/6/sfBK</td>
</tr>
<tr>
<td>F</td>
<td>0/56</td>
<td>10.30(13.00)</td>
<td>SG</td>
<td>5;2/mBK</td>
</tr>
<tr>
<td>McBride-Chang, 1998 (n=93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/30</td>
<td>6.77(6.76)</td>
<td>TG</td>
<td>5;11/sBK</td>
</tr>
<tr>
<td>Ouellette, Sénéchal, 2017 (n=171)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/60</td>
<td>29.29(13.48)</td>
<td>MG</td>
<td>5;6/mBK</td>
</tr>
<tr>
<td>Pan m.fl., 2011 (n=262)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pinyin) F</td>
<td>0/12</td>
<td>3.17(3.80)</td>
<td>MG</td>
<td>6;4/sBK</td>
</tr>
<tr>
<td>Sénéchal, 2017 (n=107)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/27</td>
<td>6.3(6.3)</td>
<td>TG</td>
<td>5;5/mBK</td>
</tr>
<tr>
<td>F</td>
<td>0/27</td>
<td>6.9(3.5)</td>
<td>O</td>
<td>0/6</td>
</tr>
<tr>
<td>Shatil m.fl., 2000 (n=306)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(israelsk)</td>
<td>F</td>
<td>1/12</td>
<td>4.79(2.92)</td>
<td>MG</td>
</tr>
<tr>
<td>Spector, 1992 (n=38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0/42</td>
<td>10.67(10.92)</td>
<td>MG</td>
<td>5;11/mBK</td>
</tr>
<tr>
<td>Treiman m.fl., 2001 (n=970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(manus)</td>
<td>OIB</td>
<td>0/100</td>
<td>60.47(17.26)</td>
<td>læsO, OF, OPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.47(18.48)</td>
<td>O</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Sproget i studiet er engelsk medmindre andet er markeret. SM=min/max=skalaens laveste og højeste score, M=gennemsnit, SD=standardafvigelse, G=gulveffekt, kl.=klasse, n=deltagerantal, F=fonologisk baseret score, O=ortografisk binær score, OIB=ortografisk ikke-binar, SS=standardscore, TG=tendens til gulveffekt, MG=mild gulveffekt, SG=stærk gulveffekt, TL=tendens til loftseffekt, ML=mild loftseffekt, BbK=begyndelsen af børnehaveklassen, mBK=midten af børnehaveklassen, sBK=slutningen af børnehaveklassen, bÅX=begyndelsen af år X (i år, årgang), max=midten af år X, sÅX=slutningen af år X, fBK=slutningen af før-børnehaveklassen, BL=bogstavlyd, BN=bogstavnavn, OF=ordforråd, OPS=opmærksomhed på sproglige, PO=pragmatisk opmærksomhed, RAN=hurtig seriel benævnelse, SES=socioøkonomisk status, SO=syntaktisk opmærksomhed, STO=stavelses-opmærksomhed, TO=tekst-opmærksomhed.

denk når det tidligere mål er fonologisk baseret.

denk når det tidligere mål er binært ortografisk.

børn med høj opmærksomhed på sproglige.

børn med lav opmærksomhed på sproglige.

scoren er lavet om til et kategorimål med to kategorier.

ved midten af børnehaveklassen er læsemålet stærkt til middt påvirket af gulveffekt, i slutningen af børnehaveklassen mildt påvirket, ved midten af år 1 er læsemålet ikke påvirket af gulveffekt.

amerikanske børn.
australiske børn.
Gulveffekt i stavemålet ser på den måde ikke ud til at kunne tilbyde en entydig forklaring på forskellene på tværs af studier. Der er dog tendenser både i enkelte studier, der måler børnestavning over tid, i forskellige grupper af børn og på tværs af studier. Disse tendenser minder om dem for børnestavning som prædiktor af senere stavning, idet mindre gulveffekt i målet af børnestavning øger chancen på tværs af studier for, at stavning er en unik prædiktor af senere læsning.

Inden for de enkelte studier er der også en tendens i retning af, at mindre gulveffekt hænger sammen med større sandsynlighed for, at børnestavning er en unik prædiktor. Fire studier har flere måletidspunkter for børnestavning. I Lazo m.fl. (1997) finder forskerne, at børnestavning er en unik prædiktor af senere læsning, når børnene går i børnehaveklassen, men ikke i før-børnehaveklassen. Da børnestavning på begge tidspunkter er påvirket af gulveffekt, men i børnehaveklassen har et gennemsnit markant længere væk fra skalaens nulpunkt end i før-børnehaveklassen, så er tendensen her i overensstemmelse med tendensen på tværs af studier, som har jo mindre gulveffekt, jo større chance for, at børnestavning er en unik prædiktor af senere læsning.

I Sénéchal (2017) er børnestavning i midten af børnehaveklassen og starten af 1. kl. en unik prædiktor, men i starten af 1. kl. får to mål lov at forklare variation i senere læsning, og her er det målet, der ikke er påvirket af gulveffekt, der forklarer unik variation i senere læsning.

I Frost (2001) er børnestavning kun en unik prædiktor af læsning i slutningen af 1. kl. blandt børn med bedst opmærksomhed på sproglyde ved studiets start, mens dette ikke er tilfældet for børn med lav opmærksomhed på sproglyde. Børn med god opmærksomhed på sproglyde har kun mild gulveffekt på målet af børnestavning, mens denne effekt er mere markant blandt børnene med lav opmærksomhed på sproglyde. Mønsteret i dette studie er således også, at jo mere gulveffekt, desto mindre sandsynligt er det, at børnestavning er en unik prædiktor af senere læsning.

Caravolas m.fl. (2001) måler børnestavning på tre tidspunkter. På intet tidspunkt er målet af børnestavning påvirket af gulveffekt, men i midten af 1. kl. er det fonologiske mål mildt påvirket af loftseffekt. I midten af
børnehaveklassen forklarer målet af tidlig stavning da også unik variation i senere læsning. I slutningen af børnehaveklassen og midten af 1. kl. forklarer målet dog ikke unik variation i senere læsning, hvilket er i strid med den tendens, som er vist i de andre studier med flere testtidspunkter. Et nærmere kig på resultatet i Caravolas m.fl. (2001) viser, at de prædiktorer, som børnestavning skal forklare variation ud over i midten og slutningen af børnehaveklassen, er opmærksomhed på sproglyde, kendskab til bogstavnavn og -lyd og læsning. I slutningen af børnehaveklassen er det fonologiske mål af børnestavning mindre påvirket af gulveffekt end i midten af børnehaveklassen. Alligevel er børnestavning ikke en unik prædiktor af senere læsning.

Et nærmere kig på styrken af sammenhængen mellem de samtidige mål af tidlig læsning og børnestavning i slutningen af børnehaveklassen og deres forbindelse til senere læsning viser, at i slutningen af børnehaveklasse er børnestavning mindre stærkt knyttet til senere læsning (r=0,69), end tidlig læsning er (r=0,90), og de to mål af henholdsvis børnestavning og tidlig læsning er moderat korreleret (r=0,63). Dette billede er anderledes i midten af børnehaveklassen. Her er børnestavning og tidlig læsning også moderat forbundet (r=0,55), mens forskellen i styrken af børnestavning og tidlig læsnings forbindelse til senere læsning er mindre (r=0,74 og r=0,81). Det er muligt, at disse forskelle i styrken af sammenhængen kan tilskrives, at målet af tidlig læsning er meget påvirket af gulveffekt i midten af børnehaveklassen, men kun mildt i slutningen. Disse sammehænne er en mulig forklaring på at Caravolas m.fl. (2001) ikke i slutningen af børnehaveklassen finder at børnestavning er en unik prædiktor af senere læsning. Det er muligt, at fordi tidlig læsning i slutningen af børnehaveklassen er mindre påvirket af gulveffekt og stærkt forbundet til senere læsning, så er børnestavning på dette tidspunkt ikke en unik prædiktor til trods for, at målet ikke er påvirket af gulveffekt.

I starten af 1. kl. skal børnestavning forklare variation ud over samme mål som i børnehaveklassen samt et yderligere mål af tidlig stavning. Til trods for, at ingen af de to mål af børnestavning er påvirket af gulveffekt, så forklarer ingen af dem unik variation i senere læsning. Styrken af de simple sammenhænge mellem de tre samtidige mål af læsning og stavning samt senere læsning er sådan, at tidlig læsning og senere læsning har en korrelationskoefficient på 0,76, mens det fonologiske mål af børnestavning er let påvirket af loftseffekt, og styrken af sammenhængen mellem senere læsning kun er r=0,52 og for børnestavning med en ortografiske score er sammenhængen med senere stavning r=0,72. De to mål, der er stærkest knyttet til senere læsning, er også stærkt forbundet med hinanden r=0,87. Dette tyder på, at målene har meget fælles variation, og da stavemålet har en mindre korrelationskoefficient end læsemålet, så er det sandsynligt, at det er årsagen til, at sidstnævnte er den unikke prædiktor (se Tabel 4.2), ikke stavemålet (se Tabel 4.6).

En anden forskel på tværs af studier er antallet af børn i studiet. I de studier, der har mange prædiktorvariable, men et lavt antal deltagere, er der risiko for, at sammenhænge, der egentlig er væsentlige sammenhænge, ikke bliver signifikante i analyserne, fordi der er for få deltagere i studiet. I

4.1.3.4.2 Scoringsmetode

Der er ikke meget stor variation i scoringsmetoden for målene af børnestavning. I alle studier, på nær studiet af Treiman m.fl. (i manus), bruger forskerne fonologisk ikke-binære scoringsmetoder. Der findes derfor også studier med fonologiske scoringsmetoder, hvor børnestavning er en unik prædiktor, og studier, hvor børnestavning ikke er en unik prædiktor.

To studier bruger både fonologiske mål og binære ortografiske mål (Caravolas m.fl., 2001; Sénéchal, 2017). I ingen af studierne er det binære ortografiske mål en unik prædiktor af senere korrekt læsning. Treiman m.fl. (i manus) bruger, som det eneste studie, et ortografisk ikke-binært stavemål. I dette studie er målet af børnestavning en unik prædiktor.

Grunden til, at de binære ortografiske mål af stavning ikke bidrager unikt til at forklare senere læsning, behøver ikke være, at disse mål er dårlige prædiktorer af senere læsning. I Caravolas m.fl. (2001) får de binære ortografiske mål af børnestavning kun lov til at forklare variation i senere læsning i en analyse, hvor der er fem andre tidlige prædiktorer med, hvoraf én er det fonologiske stavemål, og én er et mål af tidlig læsefærdighed uden gulveffekt. Da hverken det ene eller det andet stavemål i denne analyse forklarer unik variation i senere læsning, er det på baggrund af dette resultat ikke sikkert, at en ortografisk score er en mindre god prædiktor end fonologisk scoret stavning. Sénéchal (2017) er et fonologisk mål i stand til at forklare unik variation i senere læsning ud over det binære ortografiske mål. Men her er det uklart, om dette blot skyldes, at det ortografiske mål er påvirket af gulveffekt, mens det fonologiske mål ikke er. Treiman m.fl.s (i manus) ortografiske afstandsmål er ikke påvirket af gulveffekt i slutningen af børnehaveklassen. Dette kan forklare, hvorfor dette mål er en unik prædiktor. Fordi målet ikke sammenlignes med andre scoringsmetoder i studiet af Treiman m.fl. (i manus), er det ikke muligt at forklare, om denne scoringsmetode er bedre til at forklare unik variation i senere læsning end andre scoringsmetoder.

Hvis fonologiske mål af børnestavning faktisk er bedre eller lige så gode prædiktorer af senere læsefærdighed som ortografiske mål, så kunne dette indikere, at forskellene mellem ortografiske og fonologiske mål ikke er væsentlige for forudsigelsen af senere læsning, men at det væsentlige er målenes følsomhed for forskelle mellem børnene i deres evne til at integrere fonologisk opmærksomhed og bogstavkendskab i stavning, hvorfor gulv- og loftseffekt kommer til at betyde mere end scoringsmetode.

Dette ville være støtte til Ehris (fx 2005) teoretiske perspektiv om, at den helt centrale tidlige færdighed, som sætter børnenes tilegnelse af sikker læsning i gang, er tilegnelsen af det alfabetiske princip. Sénéchals
(2017) tanke om, at det er børnenes integration af viden og opmærksomhed på sproglyde og viden om bogstaverne og deres lyde i børnestavning, der sætter børnenes læsning i gang, ville også passe med resultater, der viser en fordel til mål af børnestavning, der er gode til at indfange disse forskelle mellem børnene.

4.1.3.4.3 Opsamling
På tværs af studierne i Tabel 4.6 er resultaterne om børnestavnings evne til at forklare unik variation i senere læsning modstridende. Derfor har dette afsnit set på mulig indflydelse fra gulveffekter og scoringsmetoder. Der tegner sig nogle tendenser:

- **Mere gulveffekt i målet af børnestavning er knyttet til større risiko for, at målet ikke er en unik prædiktor af senere læsning.**

Det er dog ikke ligegyldigt, hvilke prædiktorer børnestavning skal forklare variation ud over, eller hvor mange deltagere der er i studiet. Hvis studiet inddrager to forskellige mål af børnestavning som prædiktorer, så er det usikker, om disse bliver unikke prædiktorer, mens også graden af gulveffekt i målet af tidlig læsning kan være en betingelse, som er knyttet til børnestavnings mulighed for at være en unik prædiktor i studier, hvor begge mål indgår.

- **Fordele af en scoringsmetode over en anden har et meget begrænset evidensgrundlag, men på tværs af studier er tendensen, at fordelene er til et fonologisk mål af børnestavning.**

Dette har dog brug for at blive undersøgt yderligere i fremtidige studier, og ét studie viser da også, at et ikke-binært ortografisk mål af børnestavning kan være en unik prædiktor af senere læsning.

4.1.3.5 Opsamling. Litteraturgennemgang
De ovenfor præsenterede studier viser at det ikke er entydigt, at tidlig læsning faktisk er en unik prædiktor af senere læsning eller stavning, eller at børnestavning er en unik prædiktor af senere stavning eller læsning. Ved en nærmere gennemgang af studierne tråder der for hver type af sammenhæng tendenser frem på tværs af studier eller inden for enkelte studier med mere end to måletidspunkter. Disse tendenser indikerer, at både børnestavning og tidlig læsning kan forklare unik variation i senere stavning og læsning, men at det kun gælder under særlige betingelser. Evidensen er dog – disse betingelser til trods – ikke fuldstændig entydig, men understøtter, at tidlig læsning og børnestavning er mere end summen af opmærksomhed på sproglyde og bogstavkendskab, men også mere end hinanden. Det er tidligere blevet foreslået, at børnestavning blot er produktet af opmærksomhed på sproglyde og bogstavkendskab (Mann, 1993; Mann m.fl., 1987; McBride-Chang og Ho, 2005). Dette ser altså under særlige betingelser ud til ikke at være tilfældet, idet børnestavning og tidlig læsning kan forklare unik variation i senere stavning og læsning. Evidensen er dog fortsat ikke helt entydig og der er ubesvarede spørgsmål, hvorfor det fortsat er meningsfuldt at belyse disse sammenhænge.

4.1.3.5.1 Generelle overvejelser om tendenser på tværs af studier i litteraturgennemgangen
De tendenser, der er fundet på tværs af studier i denne analyse, er med forbehold for den usikkerhed, der er i sammenligninger på tværs af studier, hvor mange forskelle jo ikke er kontrollerede. Derfor bruger jeg blot tendenserne på tværs af studier til at påpege, at til trods for, at resultaterne om sammenhængen mellem tidlige og senere stave- og læsefærdighed er modsatrettede, så er der alligevel en stærk tendens til, at tidlig læsning og børnestavning kan forklare unik variation i senere læsning og/eller stavning. På den måde er litteraturgennemgangen evidens for at gulv- og loftseffekter i målene af tidlige færdigheder, scoringsmetoder og antallet af prædiktorer, prædiktorernes art og antallet af deltagere har betydning for målene af de tidlige færdigheders chance for at være unikke prædiktorer.
Det er derfor også rimeligt fortsat at spørge, om tidlige færdigheder er unikke prædiktorer af senere læsning og stavning, da evidensen ikke er entydig. I tolkningen af sådanne resultater ser det ud til at være særligt væsentligt at indtænke gulv- og loftseffekt og antallet og typen af prædiktorer set også i forhold til antallet af deltagere.

Samtidig tegner der sig også tendenser til, at scoringsmetoderne har betydning for målene af de tidlige færdigheders evne til at forklare unik variation i senere stavning og læsning. På tværs af studier er evidensen for dette dog meget begrænset, og det er derfor også oplagt at belyse sammenhængene mellem forskellige scoringsmetoder for tidlige færdigheder og senere læsning og stavning. En af vanskeligheder ved at gøre dette er, at gulveffekt og scoringsmetode er svære at adskille, da den ene metode ofte giver anledning til gulveffekt, mens den anden ikke gør. Her er således snubletråde i tolkningen af resultaterne, hvilket gør, at fordelene af en scoringsmetode over en anden ikke nødvendigvis skyldes det, der er unikt for scoringsmetoden, men nærmere scoringsmetodens evne til at skelne mellem deltagere.

4.2 Forskningsspørgsmål. Studie 2

På baggrund af ovenstående gennemgang (se afsnit 4.1) bruger indeværende studie data indsamlet i forbindelse med effektundersøgelsen (se kapitel 3) til at belyse sammenhængen mellem børnestavning og tidlig læsning i børnehaveklassen og stavning og læsning 1. kl. Formålet er at bidrage til evidensen om sammenhængene mellem mål af tidlig og senere læse- og stavefærdighed ved at belyse betydningen af scoringsmetode og de tidlige måls evne til at forklare unik variation i senere færdigheder.

De færdigheder, det er særlig interessant at undersøge det unikke bidrag ud over, er de kendte prædiktorer opmærksomhed på sproglyd og bogstavkendskab (for et dansk studie se Juul, 2007). Dette er væsentligt, da det at lade børnestavning og tidlig læsning forklare variation ud over disse belyser om børnestavning og tidlig læsning er væsentlige i sig selv, eller nærmere er summen af børnenes opmærksomhed på sproglyde og bogstavkendskab. Særligt børnestavning er blevet set på den måde (fx Mann, 1993; Mann m.fl., 1987; McBride-Chang og Ho, 2005).

Mere evidens for overlegenhed af ortografiske eller fonologiske scoringsmetoder i forudsigelsen af senere stave- og læsefærdighed kan pege på, hvad mål af børnestavning eller tidlig læsning skal kunne indfange variation i for at være tæt forbundet til senere stave- og læsefærdighed.

Fra et praksisperspektiv er det interessant, hvilke mål der forklarer variation i senere læsning og stavning. Viden om disse kan være med til at danne grundlag for at vurdere, hvilke færdigheder det er meningsfuldt at teste tidligt i børnenes udvikling med det formål at forudsige senere forskelle i børnenes læsning og stavning.

Endvidere har gennemgangen kun indeholdt et enkelt dansk studie (Frost, 2001), hvor de resterende studier hovedsageligt har været med børn fra engelsksprogede lande. I en dansk kontekst er det derfor så meget mere relevant at belyse det unikke bidrag fra børnestavning og tidlig læsning til forudsigelsen af senere stavning og læsning.

På den baggrund spørger Studie 2:

1. Er den fonologiske kvalitet eller korrekthed i børnestavning henholdsvis tidlig læsning stærkest forbundet til stavning henholdsvis læsning i 1. kl.?
2. Bidrager den fonologiske kvalitet af børnehaveklassebørns børnestavning og tidlige læsning til at forklare senere stavning og læsning unikt?
Spørgsmålene besvares i en langtidsundersøgelse, som måler børnestavning og tidlig læsning med en fonologisk afstandsscore og en binær ortografisk score midt børnehaveklassen og stavning og læsning i 1. kl. Ved undersøgelsens første måletidspunkt er de fleste børn ikke-læsere, og de staver meget få ord korrekt.

Treiman og kollegaers resultater (2016, 2019) indikerer dog, at stærk gulveffekt på ortografiske mål, enten afstedkommet af, at børnenes tidlige stovefærdighed måles tidligt eller blandt børn, der kun staver få ord korrekt, gør, at ikke-binære fonologiske mål klarer sig lige så godt eller bedre end ikke-binære ortografiske mål. Ikke-binære fonologiske mål ser således ud til at have en fordel tidligt i staveudviklingen eller blandt meget usikre stavere. Hvis fonologiske mål på dette tidspunkt ikke er underlagt i forhold til ortografiske mål, kan det således enten skyldes, at på dette tidspunkt i udviklingen af stavning er forskelle mellem børnene i deres viden om skriftens ydre form ikke relevante for udviklingen af senere stavning, eller det kan skyldes, at de ortografiske mål på dette tidlige tidspunkt ligesom fonologiske mål ikke indfanger forskelle i denne viden.

På den baggrund er det hypotesen for det første forskningsspørgsmål i Studie 2, at de fonologiske mål har en fordel over de binære ortografiske mål. Denne forventning undersøttes af, at data til denne undersøgelse, fordi de er indsamlet i forbindelse med et andet studie, og testene derfor også er udviklet til dette formål, er påvirket af gulveffekt. Gulveffekten er i såvel ortografiske som det fonologiske mål af tidlig læsning, som i ortografiske mål af børnestavning. Det fonologiske mål af børnestavning er ikke påvirket af gulv- eller loftseffekt.

For det unikke bidrag fra børnestavning og tidlig læsning forventer jeg på baggrund af tidligere studier at disse er unikke prædiktorer af senere stavning og læsning. Fordi evidensen om de tidlige færdigheders status som prædiktorer af unik variation i senere færdigheder, men også scoringsmetodens rolle i dette, fortsat ikke er entydig, er der behov for flere studier, der undersøger det unikke bidrag fra tidlige færdigheder til senere færdigheder.

Hvis tidlig læsning eller børnestavning forklarer variation i senere færdigheder ud over opmærksomhed på sproglyde og bogstavkendskab, så indikerer det, at begge færdigheder meget tidligt er væsentligt forbundet til forskelle i senere stave- og læsefærdighed, hvilket vil understøtte, at færdighederne er mere end summen af bogstavkendskab og opmærksomhed på sproglyde.

den ortografiske kvalitet i børnestavning og tidlig læsning ville være unikke prædiktorer af senere stave- og læsefærdighed.

Det er også muligt, at børnestavning kan forklare unik variation i senere læsning ud over den variation, tidlig læsning forklarer, eller omvendt. Dette ville indikere, at spirende stave- og læsefærdighed bidrager ud over hinanden til senere færdigheder, og derfor ikke blot er to forskellige måder at måle det samme på, men nærmere måler forskellige færdigheder, der har meget til fælles, men som hver især bidrager med noget, der er særligt for færdigheden og væsentligt for senere læsning og stavning.

Da børnestavning, tidlig læsning og fonologisk samt ortografisk scoringsmetode er de centrale variable i Studie 2, fremhæves de i resten af kapitlet i de afsnit, hvor de er i fokus, med fed for at understøtte læseforståelsen.

4.3 Metode. Studie 2

4.3.1 Deltagerne

4.3.2 Procedure

Børnene blev testet i børnehaveklassen (januar-februar,2017) og i 1. kl. (april, 2018). I børnehaveklassen og 1. kl. blev alle test, på nær læsning i børnehaveklassen, gennemført i små grupper med seks-syv deltagere (for stavning i børnehaveklassen 4-5 deltagere).

Børnenes lærer stod for fordelingen af børn i grupper. Kriteriet for gruppedannelse og diskussion af disse findes i afsnit 3.4.2. Proceduren for gennemførelsen af testningerne er beskrevet i afsnit 3.4.2.

4.3.3 Testbatteri

4.3.3.1 Mål børnehaveklassen

4.3.3.1.1 Stavning

Staveprøven og scoringen af denne er gennemgået i afsnit 3.4.3.1.1. Her beskrives blot ændringer i scoren, der er knyttet til anvendelsen af stavetesten i Studie 2.
Børnenes stavning blev til dette studie scoret på to måder – dels ved at opgøre antallet af korrekt stavede ord, dels ved den fonologiske afstandsscore, som er beskrevet i afsnit 3.4.3.1.1. Børnenes stavning blev scoret som korrekt eller ikke-korrekt ved at omdanne den ortografiske afstandsscore (3.4.3.1.1).

En ortografisk afstandsscore på nul, som betyder, at barnet har skrevet ordet korrekt, blev omdannet til en score på ét. Alle andre ortografiske afstandsscore blev omdannet til en score på nul. På den måde kunne hver deltager have en score mellem nul og ti. Scoren blev dernæst omregnet til procent korrekte. En score på tre blev med denne metode til, at barnet havde stavet 30 % af ordene korrekt.

Den fonologiske afstandsscore blev også omregnet til procent. Dette blev gjort ved at trække alle samlede scorer fra den højeste samlede score. På den måde blev en lav score mindre god end en høj score. Den nye score blev omregnet til procent korrekte. Børnene kunne således have en score på mellem 0 og 100 procent, hvor høj score i modsætning til lav score modsvarede bedre kvalitet i børnenes stavning.

Opgavehomogeniteten for stavetesten opgjort med den fonologiske afstandsscore var meget god med en Cronbachs alpha på 0,92 for begge.

4.3.3.2 Læsning
Som for stavetesten er læsetesten gennemgået under Studie 1 i afsnit 3.4.3.1.2. Her kommenteres blot ændringer i scoren, der er knyttet til anvendelsen af læsetesten i Studie 2.

På baggrund af transkriptionen af børnenes læsning (se afsnit 3.4.3.1.2) blev hvert korrekt oplæst ord tildelt ét point. Den binære ortografiske score var det totale antal af korrekt læste ord for hvert barn. Den fonologiske afstandsscore er beskrevet i afsnit 3.4.3.1.2. Til brug for Studie 2 blev scoren vendt ved at trække alle samlede scorer fra den højeste samlede score. På den måde blev en lav score mindre god end en høj score.

I Studie 2 blev begge scorer omregnet til procent. Børnene kunne således have en score på mellem 0 og 100 procent, hvor højere score afspejlede flere korrekt læste ord eller bedre kvalitet i oplæsningen.

Opgavehomogeniteten for læsetesten opgjort med den fonologiske afstandsscore var på 0,94, og for samme test opgjort med antal korrekt læste ord nærmede opgavehomogeniteten sig et acceptabelt niveau med en Cronbachs alpha på 0,64.

4.3.3.3 Opmærksomhed på sproglyd og bogstavkendskab
Målene af opmærksomhed på sproglyd var de samme som i Studie 1, og de er beskrevet der (se afsnit 3.4.3.1.3). Målet af børnenes kendskab til bogstavernes navne og form var det samme som i Studie 1, og det er beskrevet der (se afsnit 3.4.3.1.4). I alle deltest var børnenes score antal korrekte svar. Scoren blev omregnet til procent.

4.3.3.2 Mål 1. kl.

4.3.3.2.1 Stavning og læsning
Målene stavning og læsning i 1. kl. var de samme som i Studie 1, og de er beskrevet der (se afsnit 3.4.3.2.1). For begge mål var børnenes score antal korrekte svar. Scoren blev omregnet til procent.
4.4 Resultater. Studie 2
Formålet med afsnittet er at præsentere resultaterne af analyser, som kan besvare de to forskningsspørgsmål i Studie 2. Det første forskningsspørgsmål besvares med en sammenligning af fonologiske og ortografiske scoringsmetoder. Det næste undersøger det unikke bidrag fra den fonologiske kvalitet i børnestavning og tidlig læsning til senere læsning og stavning.

4.4.1 Præsentation af analysemetoder
Forskningsspørgsmålene besvares i flere trin.

Først præsenteres deskriptiv statistik for målene i børnehaveklassen og 1. kl. Formålet er at give læseren indsigt i fordelingen og spredningen på de forskellige mål. Gennemgangen af tidligere studier viste en tendens til, at gulveffekter var knyttet til mindre sandsynlighed for, at de tidlige mål var unikke prædiktorer af senere stavning og læsning. På den baggrund vil jeg gerne synliggøre disse tendenser i indeværende studie.

Dernæst er jeg interesseret i at sansynliggøre, at de fonologiske afstandsmål, som er nye i en dansk sammenhæng, faktisk er reelle mål af stavning og læsning, og at de samtidig ikke måler tidlig stavning og læsning helt på samme måde. Derfor ses først på disse måls samstemmende og forudsigende validitet, her udtrykt ved styrken af sammenhængen mellem disse mål og dels de samtidige mål af stavning og læsning scoret som korrekthed og læsning og stavning i 1. kl.

På den baggrund, og med det formål at besvare forskningsspørgsmål 1, sammenligner jeg i alt to sæt af korrelationer: et sæt for læsning og et for stavning i 1. kl. For både læsning og stavning sammenlignes styrken af sammenhængen mellem disse færdigheder og tilsvarende færdighed i børnehaveklassen scoret som enten fonologisk afstand eller som binær ortografisk. Da jeg kun har et sæt af sammenligninger for henholdsvis læsning og stavning i 1. kl., vurderer jeg, at jeg ikke behøver at imødekomme en øget risiko for type 1 fejl, som opstår ved multiple sammenligninger (Field, 2013, s. 68-69) ved at tilpasse p-værdien efter Bonferronimetoden. Jeg bruger Steigers test (1980) til at vurdere, om der er signifikant forskel i styrken af sammenhængene.

Dernæst bruger jeg multipel hierarkisk regressionsanalyse som analysemetode, for at besvare forskningsspørgsmål 2. Jeg bruger denne analyse, da den viser, om en prædiktor-variabel forklarer en signifikant andel af variation i outcome-variablen ud over den, som prædiktorvariablene, der allerede er i modellen, forklarer. Læsning og stavning i 1. kl. er i disse analyser den færdighed, som jeg ønsker at forudsige, og de indgår derfor i analyserne som outcome-variable. Opmærksomhed på sproglyd og bogstavkendskab er de færdigheder, som jeg ønsker at undersøge, om de fonologiske afstandsmål kan forklare variation ud over. Derfor indgår opmærksomhed på sproglyd og bogstavkendskab som prædiktorvariable i analysens første trin og det relevante fonologiske afstandsmål som prædiktorvariabel i analysens andet trin.

En begrænsning i dette studie er antallet af deltagere n=92, hvilket gør, at antallet af prædiktorer, som det er rimeligt at have med i regressionsanalyserne, er begrænset til så få som muligt. Ifølge VanVoorhis og Morgan (2007) førmævnte tommelfingerregel for stikprøvens størrelse kan indeværende studie med en stikprøve på 92 deltagere, når en analyse skal undersøge, om en overordnet modells forudsigelse er signifikant, have op til fem prædiktorer i modellen uden risiko for at vurdere den overordnede models signifikans forkert. Når de enkelte prædiktorers bidrag skal vurderes, har indeværende studie i udgangspunktet lidt få deltagere til dette formål. Derfor begrænser jeg antallet af prædiktorer i den
hierarkiske regressionsmodel ved alene at bruge ét mål af stavning og læsning, samt ved at bruge en sammensat score for de to mål af opmærksomhed på sproglyde.

4.4.2 Deskriptiv statistik

4.4.2.1 Middelværdier

Den deskriptive statistik (Tabel 4.6) viser, at børnene i børnehaveklassen har et numerisk højere gennemsnit for det fonologiske afstandsmål af stavning M=43,94 og læsning M=19,87 end for de ortografiske mål af stavning M=12,62 og læsning M=7,07. Ud over gennemsnittet er medianen også med i tabellen. Mønsteret for gennemsnittet og medianen er meget sammenligneligt, men medianen er for alle stave- og læsemålene i børnehaveklassen mindre end gennemsnittet. Denne forskel tyder på, at fordelingerne er højreskæve. I højreskæve fordelinger er der risiko for, at enkelte elever med høje score påvirker gennemsnittene i en sådan grad, at disse bliver et mindre reelt udtryk for middelværdien end medianen. Standardafvigelsen og gennemsnittet for de fire mål indikerer, at fordeling for begge læsemål er påvirket af gulveffekt, dog mere for det ortografiske end for det fonologiske mål, at fordelingen for det ortografiske stavemål også er påvirket af gulv, men at det fonologiske mål af stavning ikke er. For både læsning og stavning kan forskellen mellem de to fordelinger af scorer alene tilskrives scoringsmetoden, da scoren er baseret på samme data.

Tabel 4.6

<table>
<thead>
<tr>
<th>Mål</th>
<th>Børnehaveklasse</th>
<th>M (SD)</th>
<th>Median (25;75 percentil)</th>
<th>Min</th>
<th>Maks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OB stavning</td>
<td>12,61 (20,75)</td>
<td>0,00 (0,00;20,00)</td>
<td>0</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>2 FA stavning</td>
<td>43,94 (26,61)</td>
<td>36,95 (22,57; 61,95)</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3 OB læsning</td>
<td>7,07 (18,86)</td>
<td>0,00 (0,00;0,00)</td>
<td>0</td>
<td>91,67</td>
<td></td>
</tr>
<tr>
<td>4 FA læsning</td>
<td>19,87 (26,21)</td>
<td>9,43 (6,92;15,72)</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5 OPS. forlyd-rim</td>
<td>56,96 (24,22)</td>
<td>53,33 (40,00; 73,33)</td>
<td>13,33</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6 OPS. kons</td>
<td>60,76 (32,89)</td>
<td>60,00 (30,00; 95,00)</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7 bogstavkendskab</td>
<td>79,42 (18,63)</td>
<td>84,48 (75,86; 93,10)</td>
<td>3,45</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. kl.</th>
<th>40,15 (18,17)</th>
<th>44,12 (29,41; 52,94)</th>
<th>0</th>
<th>79,41</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 OB læsning</td>
<td>55,02 (23,10)</td>
<td>51,92 (38,46; 67,95)</td>
<td>7,69</td>
<td>100</td>
</tr>
</tbody>
</table>

Note. Alle mål er angivet i %. M=gennemsnit, SD=standardafvigelse, Min=laveste score, Maks=højeste score, OB=ortografisk score, binær, FA=fonologisk score, afstandsmål, OPS=opmærksomhed på sproglyde.

For de to mål af opmærksomhed på sproglyd viser den deskriptive statistik meget sammenlignelige gennemsnit for genkendelsesopgaven (M=60,76) og synteseopgaven (M=56,96). For begge mål, men for særligt genkendelsesopgaven, er gennemsnittet og medianen meget sammenlignelige. Dette tyder på, at fordelingen af børnenes score ved opmærksomhed på sproglyd ikke i særlig grad er højreskæv.

For bogstavkendskab er gennemsnittet (M=79,42) numerisk lavere end medianen (Median=84,48). Dette kan være et tegn på, at fordelingen er venstreskæv og enkelte lave score trækker gennemsnittet ned.

Læsning og stavning i 1. kl. har begge et gennemsnit og en medianværdi, som er rimligt tæt på hinanden. Forskellen mellem gennemsnit og median for læsning indikerer dog en tendens til, at fordelingen er højreskæv, og for stavning, at den er venstreskæv.

4.4.2.2 Histogrammer

Histogrammerne i Figur 4.1 til Figur 4.6 giver et visuelt overblik over forskelle i fordelingen af børnenes scorer på de syv børnehaveklassemål. Histogrammerne for stave- og læsemålene i børnehaveklassen Figur

Samtidig er den meget høje andel af børn, der scorer nul i læsning og stavning ved en ortografisk scoringsmetode, meget synlig i histogrammerne (Figur 4.3). Det er tydeligt, at numerisk færre børn scorer
nul, når scoren er baseret på fonologiske afstandsmål (Figur 4.3a). For læsning scorer 81,5 % af deltagerne nul, når scoringsmetoden er ortografisk, mens 1,1 % har en fonologisk afstandsscore på nul. For stavning scorer 57,6 % af deltagerne nul, når scoringsmetoden er ortografisk, mens 1,1 % har en fonologisk afstandsscore på nul. Fordelingen rykkes både for læsning og stavning med ændring fra en ortografisk til en fonologisk scoringsmetode mod højre og får også et lavere højdepunkt. Numerisk færre børn i bunden af skalaen har således den samme score, når scoringsmetoden er fonologisk afstand.

De to mål af opmærksomhed på sproglyde fordeler sig jævnt over skalaen, dog har genkendelsesmålet (Figur 4.4) en tendens til venstreskæv fordeling og loftseffekt, hvilket ikke blev afsløret i den deskriptive statistik. Syntesemålet (Figur 4.5) har en jævn fordeling og en tendens mod højreskæv som på baggrund af den visuelle inspektion af histogrammet er meget beskeden.

Fordelingen for bogstavkendskab er i overensstemmelse med, hvad forskellen imellem gennemsnittet og medianen indikerede (se Tabel 4.6), tydeligt venstreskæv og med loftseffekt (Figur 4.6).

Figur 4.4
Histogram over fordeling af børnehaveklassebørns score for opmærksomhed på sproglyde, genkendelse af forlyd (“Konsonanter”).

Figur 4.5
Histogram over fordeling af børnehaveklassebørns score for opmærksomhed på sproglyd, syntese (“Forlyd-rim”).

Figur 4.6
Histogram over fordeling af børnehaveklassebørns score for bogstavkendskab.
4.4.2.3 Sammensatte variable og transformering

Den venstreskæve fordeling af scoren for børnenes genkendelse af forlyd ("Konsonanter") kunne være argument for at fjerne denne variable fra de videre analyser, da venstreskæve fordelinger kan give problemer i forhold til de parametriske tests antagelser, og da der er to mål af opmærksomhed på sproglyd i børnehaveklassen. Det er dog interessant at have variation for begge mål af opmærksomhed på sproglyd med som prædiktorvariable i regressionsanalyserne, da de måler forskelle mellem børnene i forskellige typer af opmærksomhed på sproglyd. I "Konsonanter" skal børnene genkende forlyden, hvilket minder om en del af børnenes opgave, når de starver. I "Forlyd-rim" skal børnene danne syntese mellem en forlyd og en rimdel, så det bliver til et ord. Denne opgave minder om en del af det, børnene skal, når de læser. Fordi de to opgaver af opmærksomhed på sproglyd på den måde ligner henholdsvis læsning og stavning, vil jeg gerne have variation fra begge med i den hierarkiske regressionsanalyse, der skal belyse, om de fonologiske afstandsmål forklarer unik variation i læsning og stavning i 1. kl. (4.4.4). Hvis jeg tager genkendelsesopgaven ud, er der risiko for, at jeg overvurderer betydningen af de fonologiske afstandsmål af stavning, fordi den opgave af opmærksomhed på sproglyd, som får lov at forklare variation i stavning i 1. kl., er tættere knyttet til læsning end til stavning og derfor ikke forklarer så meget variation i stavning og dermed efterlader mere ikke-forklaret variation til det fonologiske afstandsmål af stavning. Derfor vælger jeg at inddrage begge mål af opmærksomhed på sproglyd i de resterende analyser.

Jeg vælger at omdanne de to mål af opmærksomhed på sproglyd til én sammensat score, fordi det er en fordel for regressionsanalysernes mulighed for at finde signifikans, når der faktisk er signifikans, også kaldet type 1 fejl, at begrænse antallet af prædiktorer. Det skyldes, at dette studie kun har 92 deltagere, hvilket som før diskuteret er lidt i underkanten af det anbefalede deltagerantal, når jeg undersøger signifikante bidrag fra de enkelte prædiktorer (VanVoorhis og Morgan, 2007). Det betyder, at jeg med 92 deltagere i undersøgelsen risikerer at overse signifikante bidrag fra de enkelte prædiktorer. Da jeg ikke kan ændre stikprøvens størrelse, da deltagerne oprindeligt er blevet udvalgt til en træningsundersøgelse (se kapitel 3), er det relevant at minimere antallet af prædiktorer, jeg inddrager, for at undgå at overse signifikante bidrag fra de enkelte prædiktorer så meget som muligt.

Figur 4.7
Histogram over fordeling af børnehaveklassebørns score i det sammensatte mål af opmærksomhed på sproglyde

Derfor omdannes de to mål af opmærksomhed på sproglyd til en sammensat score. Dette er teoretisk berettiget, fordi begge mål er velafprøvede valide mål af opmærksomhed på sproglyd (Borstrøm og
Petersen, 2006), og en Pearsons korrelationsanalyse viser, at deres korrelationskoefficient er $r = 0,62$ (se Tabel 4.9), hvorfor sammenhængen mellem målene er moderat til stærk.

Ifølge Song m.fl. (2013) et det rimeligt at lave en sammensat variabel som en simpel gennemsnitsvariabel, når den laves med det formål at kontrollere for andelen af type 1 fejl ved multiple sammenligninger med en tredje variabel, og de oprindelige variable har sammenlignelig stærke relationer til denne tredje variabel. Dette vurderer jeg er tilfældet i de to mål af omfærskomshed på sproglyd, da Pearsons korrelationsanalyse viser, at korrelationskoefficienten for sammenhængen mellem ”Konsonant” og stavning henholdsvis læsning i 1. kl. er 0,61 og 0,60 (se Tabel 4.9) og for sammenhængen mellem ”Forlyd-rimdel” og henholdsvis stavning og læsning er 0,56 og 0,64 (se Tabel 4.9). En simpel gennemsnitsvariabel beregnes ved at omdanne de oprindelige variable til z-scorer og summere disse (Song m.fl. 2013). Derfor er den sammensatte score af omfærskomshed på sproglyd, der indgår i regressionsanalyserne i afsnit 4.4.3 og 4.4.4, beregnet ved at omdanne scoren for ”Konsonant” og ”Forlyd-rimdel” til z-scorer og lægge disse sammen. Fordelingen for den nye sammensatte score ses i nedenstående histogram (Figur 4.7)

For at kunne bruge det venstreskæve mål bogstavkendskab i regressionsanalyserne i afsnit 4.4.3 og 4.4.4 uden at overtræde analysernes antagelse, er det nødvendigt at transformere data, så fordelingen ikke overtræder antagelserne om lineær sammenhæng. Jeg har derfor afprøvet at logtransformere fordelingen, efter at jeg har vendt den om. Dette har jeg gjort med formlen herunder (se Ligning 4). Proceduren anbefales for meget venstreskæve fordelinger i Field (2013).

Ligning 4
Formel for transformationen af bogstavkendskab.

$$BK_{trans} = \text{LG10}((\text{Maks}(BK) + 1) - BK)$$

Note. $BK_{trans}=transformeret$ score for BK, $BK=score$ for variablen bogstavnavn ved førtest, $\text{LG10}=\log$transformering, $\text{Maks}=den$ maksimale score for variablen.

Visuel inspektion af histogrammet for de transformerede score viser, at fordelingen af score for bogstavkendskabsmålet normaliseres (se Figur 4.8). Logtransformeringen af bogstavkendskabsmålet ændrer på fordelingen, men ændrer ikke på, at målet med sin tendens til loftseffekt ikke er velegnet til at skelne mellem færdighedsniveauet for eleverne i skalaens øverste del. Loftseffekt kan have den betydning, at sammenhænge, hvor målet indgår, bliver mindre stærke, end de reelt er. Dette vil være tilfældet for både målet af bogstavkendskab og målet ”Konsonant”, som indgår i det nye sammensatte mål af omfærskomshed på sproglyd.

Ligning 5
Formel for transformationen af læsning ved førtest.

\[LFA_{trans} = \log(10(LFA + 1)) \]

Note. LFAtrans=transformeret score for LFA, LFA=score for variablen fonologisk afstandsscore læsning ved førtest.

På baggrund af visuel inspektion af histogrammet for den transformerede score er den mere normaliseret med transformeringen end uden, hvorfor den transformerede score bruges i analyserne i afsnit 4.4.3 og 4.4.4. Som for målet af bogstavkendskab og målet ”Konsonanter”, så gør tendensen til gulveffekt, at bidraget fra læsning formentlig vil blive undervurderet i analyserne, da målet af læsning ikke kan skelne fint nok mellem børnene i den nedre ende af skalaen.

Figur 4.8
Histogram over fordeling af børnehaveklassebørns score i det transformerede mål af bogstavkendskab.

4.4.3 Sammenligning af fonologisk afstandsscore og binær ortografisk score

I dette afsnit belyses, om de *fonologiske* afstandsmål er reelle mål af stavning og læsning, og om de samtidige måler tidlig stavning og læsning på ikke helt samme måde, som de *ortografiske* mål. I slutningen af afsnittet præsenteres resultatet af de analyser, der danner grundlag for at besvare forskningsspørgsmål 1.

4.4.3.1 Er de fonologiske og orthografiske mål to sider af samme sag?

Jeg bruger Spearman’s rangkorrelationer (se Tabel 4.7) til at vurdere styrken af sammenhængen mellem de samtidige mål af læsning og stavning. Jeg leder dels efter stærke sammenhænge mellem det *fonologiske* afstandsmål af læsning eller stavning og de binære *ortografiske* mål af samme færdighed. Stærke sammenhænge kan tolkes som et udtryk for, at de *fonologiske* afstandsmål, som er nye i en dansk sammenhæng, i høj grad måler samme færdigheder, som de klassiske mål korrekt/ikke korrekt. Denne vurdering af samtidig validitet er ikke et meget stærkt mål, da begge score er baseret på samme testord, hvorfor man af den grund alene vil kunne forvente rimelig høj sammenhæng mellem målene. En bedre måde at måle samtidig validitet ville have været at inddrage andre kendte læsetest i testbatteriet i børnehaveklassen og sammenlignet med disse, men da data blev insamlet i forbindelse med Studie 1 (se kapitel 3), hvor dette mål ikke var meningsfuldt, var det heller ikke en del af testbatteriet i Studie 2, selvom det ville have givet mening her.
Samtidig er jeg interesseret i at påvise, at de ortografiske og fonologiske mål, som jo er baseret på de samme items, ikke måler børnestavning og tidlig læsning i børnehaveklassen på helt samme måde. Jeg vil derfor gerne have, at sammenhængene ikke er alt for stærke.

En tommelfingerregel for styrken af sammenhænge er, at Pearson's korrelationer over 0,5 og under -0,5 er moderate, over 0,7 og under -0,7 er stærke samt over 0,9 og under -0,9 er meget stærke (Hinkle, Wiersma og Jurs, 2003). To variable med en Pearson's korrelationskoefficient på over 0,7 eller under -0,7 deler ca. 50 % af variansen med hinanden. Når to mål deler meget varians, er det et tegn på, at de i høj grad måler noget ens. Derfor kan stærke sammenhænge tolkes som et tegn på samstemmende validitet mellem to mål.

For Spearman's rho er der ikke samme retningslinjer for sammenhængen mellem koefficientens styrke og specifikke værdier af Spearman's rho, men værdien har dog tendens til at være meget sammenlignelig, men lidt lavere end Pearson's korrelationskoefficienter (Laerd Statistics, 2018). Som for Pearson's korrelationskoefficient veksler værdien af Spearman's rho mellem -1 og 1. Jo tættere tallet er på 1 eller -1, desto stærkere er sammenhængen mellem rangordningen i de to mål, og jo tættere på 0, desto svagere er denne sammenhæng (Laerd Statistics, 2018). Så selv om der ikke findes faste regler for, hvor høj Spearman's rho skal være, for at en sammenhæng er meget stærk, så minder værdierne om Pearson's korrelationskoefficient. Derfor har jeg valgt at trække grænsen for stærke sammenhænge ved Spearmans rho værdier over 0,6.

Tabel 4.7
Spearman's rho og Pearson's korrelationskoefficienter for det binære ortografiske mål og fonologiske afstandsmål af læsning og stavning i børnehaveklassen og for læsning og stavning i 1. kl.

<table>
<thead>
<tr>
<th>Mål</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Børnehaveklassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 OB stavning</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 FA stavning</td>
<td>.86**</td>
<td>-</td>
<td>(,74**)</td>
<td>(,70**)</td>
<td>(,69**)</td>
<td></td>
</tr>
<tr>
<td>3 OB læsning</td>
<td>.59**</td>
<td>.53**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4 FA læsning*</td>
<td>.68**</td>
<td>.75**</td>
<td>,65**</td>
<td>-</td>
<td>(,67**)</td>
<td>(,60**)</td>
</tr>
<tr>
<td>1. klasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 OB stavning</td>
<td>,65**</td>
<td>,73**</td>
<td>,50**</td>
<td>,69**</td>
<td>-</td>
<td>(,71**)</td>
</tr>
<tr>
<td>6 OB læsning</td>
<td>,67**</td>
<td>,70**</td>
<td>,38**</td>
<td>,55**</td>
<td>,73**</td>
<td></td>
</tr>
</tbody>
</table>

Note. n=92; alle mål er angivet i %, OB=ortografisk score, binær, FA=fonologisk score, afstandsmål, Spearman's rho = tal uden parentes og under diagonal, Pearson's korrelationskoefficient = tal i parentes og over diagonal, ** angiver at korrelationen er signifikant p<,001 (to-halet).

* scoren er logtransformeret

For sammenhængen af rangordningen for de to samtidige mål af læsning er Spearman's rho =,65, og for de samtidige mål af stavning er Spearman's rho =,86 (Tabel 4.7). Begge værdier indikerer stærke sammenhænge mellem to mål og tolkes derfor som udtryk for, at det nye fonologiske mål i høj grad måler det samme som det kendte binære ortografiske mål, og der vurderet ved styrken af denne sammenhæng er samstemmende validitet. Samtidig er der ikke perfekt korrelation mellem målene, hvorfor det er sandsynligt, at scoringsmetoderne ikke måler tidlig stavning og læsning helt ens.

4.4.3.2 Forudsigende validitet?
Jeg bruger Pearson's korrelationskoefficienter til at vurdere, hvor meget variation det fonologiske afstandsmål af læsning henholdsvis staving forklarer i det tilsvarende mål i 1. kl. (se sammenhængene i Tabel 4.7). Som ved samstemmende validitet leder jeg efter stærke sammenhænge som et tegn på forudsigende validitet. Der er ikke faste regler for, hvornår en sammenhæng er stærk nok til at indikere

Det fonologiske afstandsmål for stavning i børnehaveklassen har en stærk sammenhæng med stavning i 1. kl.

Den stærke sammenhæng på r = 0,7 (se Tabel 4.7) indikerer forudsigende validitet.

Determinationskoefficienten, som er Pearsons korrelationskoefficient i 2. potens, angiver, hvor stor en andel af variansen det tidligere stavemål deler med det senere stavemål. For sammenhængen mellem det fonologiske afstandsmål af stavning i børnehaveklassen og stavning i slutningen af 1. kl. er $r^2 = 0,49$, hvilket betyder, at børnehaveklassemålet forklarer 49 % eller cirka halvdelen af variansen i stavning i slutningen af 1. kl.

For at besvare forskningsspørgsmål 1 sammenligner jeg i alt to sæt af Spearmans rho-værdier (se Tabel 4.7): et sæt for læsning og et for stavning i 1. kl.

Da jeg kun har et sæt af sammenligninger for henholdsvis læsning og stavning i 1. kl., vurderer jeg, at jeg ikke behøver at imødekomme en øget risiko for type 1-fejl, som opstår ved multiple sammenligninger (Field, 2013, s. 68-69) ved at tilpassede p-værdien efter Bonferronimetoden.

Jeg bruger Steigers test (1980) – til at vurdere, om der er signifikante forskelle i styrken af sammenhængen mellem de to børnehaveklassemål af henholdsvis læsning og stavning og samme færdighed i 1. kl. Dette gør jeg for at vurdere, om de fonologiske afstandsmål af læsning og stavning er ligeså tæt eller tættere forbundet til senere læsning og stavning, som de tilsvarende ortografiske mål.

Tabel 4.8

Steigers test for parvise sammenligninger mellem de to børnehaveklassemål af henholdsvis læsning og stavning og deres sammenhæng med samme færdighed i 1. kl.

<table>
<thead>
<tr>
<th>Færdighed</th>
<th>1. kl.-mål</th>
<th>Børnehaveklassemål</th>
<th>Spearmans rho</th>
<th>Steigers test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavning</td>
<td>OB stavning</td>
<td>FA stavning</td>
<td>0,73</td>
<td>2,061, 0,039*</td>
</tr>
<tr>
<td></td>
<td>OB stavning</td>
<td></td>
<td>0,65</td>
<td></td>
</tr>
<tr>
<td>Læsning</td>
<td>OB læsning</td>
<td>FA læsning</td>
<td>0,55</td>
<td>2,246, 0,025*</td>
</tr>
<tr>
<td></td>
<td>OB læsning</td>
<td></td>
<td>0,38</td>
<td></td>
</tr>
</tbody>
</table>

*angiver signifikant forskel i styrken af sammenhængen p < 0,05, to-halet

Note. beregning lavet på http://quantpsy.org/corrtest/corrtest2.htm, OB=ortografisk score, binær, FA=fonologisk afstandsscore.
Den høje Spearmans rho for begge mål af tidlig stavning (se Tabel 4.8) indikerer, at begge mål er tæt forbundet til stavning i 1. kl., men det fonologiske afstandsmål er signifikant tættere knyttet til senere stavning end det ortografiske (p = .039, to-halet).

Også det fonologiske afstandsmål af tidlig læsning er signifikant stærkere forbundet til læsning i 1. kl. end det ortografiske mål (p = .025, to-halet) (se Tabel 4.8).

4.4.4 Børnestavning og tidlig læsning som unikke prædiktorer

Dette afsnit præsenterer resultater af fire multiple hierarkiske regressionsanalyser med det formål at kunne besvare forskningsspørgsmål 2.

For både læsning og stavning i 1. kl. præsenteres resultater fra to multiple hierarkiske regressionsanalyser. Begge undersøger det unikke bidrag til disse fra den fonologiske kvalitet af børnestavning og tidlig læsning i børnehaveklassen. I de første analyser skal børnestavning og tidlig læsning forklare variation ud over opmærksomhed på sproglyd og bogstavkendskab. I de næste skal de også forklare variation ud over hinanden.

Før regressionsanalyserne præsenteres, vurderes analysens antagelserne om multikolinearitet ved styrken af de simple sammenhænge mellem de oprindelige mål af opmærksomhed på sproglyd, det nye sammensatte mål af opmærksomhed på sproglyd (0), bogstavkendskabsmålet, de samtidige fonologiske afstandsmål af tidlig læsning og børnestavning samt målene af læsning og stavning i 1. kl. Disse er beregnet som Pearsons korrelationer. Antagelserne om normalfordeling og lineær sammenhæng vurderes jeg for alle mål, undtagen det oprindelige "konsonant"-mål, til at være overholdt på baggrund af visuel inspektion af histogrammer og spredningsdiagrammer for de parvise sammenhænge mellem variablene.

Tabel 4.9 Pearson's korrelationskoefficienter for opmærksomhed på sproglyde ("Forlyd-rim", "Konsonant", "Sammensat"), bogstavkendskab, fonologiske afstandsmål af tidlig læsning og børnestavning samt læsning og stavning i 1. kl.

<table>
<thead>
<tr>
<th>Mål</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Børnehaveklassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 OPS Forlyd-rim</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 OPS Konsonant</td>
<td>.62**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 OPS Sammensatb</td>
<td>.90**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 bogstavkendskab</td>
<td>-.41*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 FA stavning</td>
<td>.63**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 FA læsningc</td>
<td>.61**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. klasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 OB stavning</td>
<td>.56**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 OB læsningd</td>
<td>.64**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. n=92, alle mål er angivet i % medmindre andet er angivet i note, OPS=opmærksomhed på sproglyde, OB=ortografisk score, FA=fonologisk score, afstandsmål, ** angiver at korrelationen er signifikant p<.001 (to-halet).
b logtransformeret score.
c vendt og logtransformeret score.
d z-score.

Jeg bruger størrelsen af Pearsons korrelationer til at vurdere styrken af sammenhængen mellem mål i børnehaveklassen. Det gør jeg for at sikre mig, at ingen mål har stærke sammenhænge (r >.7), og der dermed er risiko for multikolinearitet mellem variable. Multikolinearitet besværliggør tolkningen af bidraget fra de individuelle variable til forudsigelsen af læsning og stavning (Laerd statistics, 2015). Samtidig er der risiko for, at regressionskoefficienterne ikke estimeres præcist og standardfejlen er højere, hvorfor t-
værdierne har tendens til at blive lave, og p-værdien dermed, uanset om dette er tilfældet eller ej, ikke viser, at individuelle prædiktorer bidrager signifikant til at forklare forskelle i outcome-variablen. Meget høje Pearsons-korrelationer er én af flere indikatorer på multikollinearitet (Field, 2013).

Pearsons korrelationskoefficienterne i Tabel 4.9 viser, at sammenhængene mellem det sammensatte mål af omærksomhed på sproglyd og de to oprindelige mål er meget stærk ($r = .9$). Denne sammenhæng er problematisk i forhold til multikollinearitet, men da jeg kun bruger det sammensatte mål i regressionsanalyserne, er dette ikke et problem for analysen. Sammenhængene mellem det sammensatte mål af opmærksomhed på sproglyd og børnestavning er også stærk ($r = .72$). Ligesom sammenhængen mellem de to fonologiske afstandsmål af tidlig læsning og børnestavning også er stærk ($r = .74$). Fra de simple sammenhænge er det således tydeligt, at det sammensatte mål af opmærksomhed på sproglyde og stavning, og dels de to fonologiske afstandsmål i høj grad forklarer variation i hinanden. Derfor kan man også argumentere for, at det ikke er muligt at have begge mål i samme regressionsanalyser, men da jeg jo netop er interesseret i, hvorvidt de fonologiske afstandsmål bidrager med variation ud over omærksomhed på sproglyd og bogstavkendskab, så inddrages målene i analysen vel vidende, at jeg skal være opmærksom på, at den stærke simple sammenhæng mellem disse mål kan betyde, at der er risiko for multikollinearitet. Alle andre sammenhænge har lavere Pearsons-korrelationskoefficienter og kan betegnes som moderate til moderat-stærke. Risikoen for multikollinearitet er således afgrænset til sammenhængen mellem stavning og fonologisk omærksomhed i børnehaveklassen og sammenhængen mellem de to fonologiske afstandsmål af læsning og stavning.

4.4.4.1 Unikke bidrag fra tidlige færdigheder til færdigheder i 1. kl. ud over opmærksomhed på sproglyd og bogstavkendskab
Jeg laver to multiple hierarkiske regressionsanalyser i to trin for at forklare variation i henholdsvis læsning og stavning i 1. kl. De kendte prædiktorer omærksomhed på sproglyd (z-score) og bogstavkendskab inddrages i trin 1, og det relevante fonologiske afstandsmål i trin 2 (Tabel 4.10).

4.4.4.1.1 Det fonologiske afstandsmål af børnestavning, som forudsiger af stavning i 1. kl.

Toleranceværdierne, som alle var større end 0,1, indikerede ikke multikollinearitet for nogle af variablene, hvorfor den stærke sammenhæng mellem omærksomhed på sproglyd og de fonologiske afstandsmål vurderes til at kunne indgå i samme analyse uden af overtræde antagelsen om multikollinearitet. Endvidere var der ingen ekstreme værdier, idet ingen studentized slettede residualer var større end ±3 standardafvigelsler. Der var heller ikke særligt indflydelsesrige værdier, da ingen leverage-værdier var større end 0,2, og ingen værdier for Cooks afstand var over 1. På baggrund af visuel inspektion af et PP-Plot vurderede jeg, at antagelsen om normalfordelte residualer blev overholdt.

Den fulde model, som bruger omærksomhed på sproglyd, bogstavkendskab og børnestavning (Model 2 i Tabel 4.10) til at forudsige stavning i 1. kl., var signifikant, $R^2 = .573$, $F(3, 88) = 39,399$, $p < .001$, tilpasset $R^2 = .559$. 167
Tilføjelsen af opmærksomhed på sproglyd og bogstavkendskab i børnehaveklassen til at forudsige stavning i 1. kl. (Model 1 i Tabel 4.10) ledte til en signifikant forøgelse af R^2 på $\Delta R^2 = .521$, $F(2, 89) = 48,498$, $p < .001$. Tilføjelsen af stavning i børnehaveklassen til at forudsige stavning i 1. kl. (Model 2 i Tabel 4.10) ledte til en signifikant forøgelse af R^2 på $\Delta R^2 = .052$, $F(1, 88) = 10,666$, $p = .002$.

Tabel 4.10

Multipel hierarkisk regression til at forudsige stavning i 1. kl. fra opmærksomhed på sproglyd, bogstavkendskab og børnestavning i børnehaveklassen.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>β</td>
</tr>
<tr>
<td>Konstant</td>
<td>59,59**</td>
<td></td>
</tr>
<tr>
<td>OPS</td>
<td>4,70**</td>
<td>.7</td>
</tr>
<tr>
<td>Bogstavkendskab</td>
<td>-16,53**</td>
<td>-.37</td>
</tr>
<tr>
<td>FA stavning</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R^2</td>
<td>.52</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>48,50**</td>
<td></td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.52</td>
<td></td>
</tr>
<tr>
<td>ΔF</td>
<td>48,50**</td>
<td></td>
</tr>
</tbody>
</table>

*Note. n=92, OPS=opmærksomhed på sproglyde, FA=fonologisk afstandsscore, *$p<.05$, **$p<.001$.

bVendt og logtransformeret score.

Det fonologiske afstandsmål af **børnestavning** forklarer unik variation i stavning i 1. kl. Dette tolkes ud af den multiple hierarkiske regressionsmodel, ved at tilføjelsen af **børnestavning** gjør modellen (Model 2 i Tabel 4.10) signifikant bedre til at forudsige variation i stavning i 1. kl. **Børnestavning** i børnehaveklassen forklarer 5% unik variation i stavning i 1. kl., når der er redegjort for de 52% variation, som det sammensatte mål af opmærksomhed på sproglyd og bogstavkendskab forklarer.

I den fulde model (Model 2 i Tabel 4.10), hvor både opmærksomhed på sproglyd, bogstavkendskab og børnestavning i børnehaveklassen er inddraget med det formål at forklare stavning i 1. kl., kan alle prædiktorvariable forudsige forskelle i stavning i 1. kl. signifikant. Et procentpoints bedre **børnestavning** i børnehaveklassen er forbundet med 0,25 procentpoint højere score i stavning i 1. kl., mens en enheds lavere bogstavkendskab i børnehaveklassen (score er omvendt og logtransformeret, hvorfor tilbagegang egentlig er fremgang) er forbundet med 11,88 procentpoint højere score i stavning i 1. kl. Denne fremgang er svær at tolke direkte på grund af transformeringen af scoren, men uanset afspejler den negative beta-koefficient en positiv lineær sammenhæng, fordi scoren er vendt om. En enheds bedre opmærksomhed på sproglyd (z-score) er forbundet med 2,72 procentpoint højere score i stavning i 1. kl.

De standardiserede beta-koefficienter er alle signifikant forskellige fra nul, hvilket indikerer, at alle variable er lineært forbundet til stavning i 1. kl., og da disse alle er i enheden standardafvigelser, så er størrelsen af de standardiserede beta-koefficienter direkte sammenligneligt. Dermed er forskelle i stavescore i børnehaveklassen forbundet med de største forskelle i stavescore i 1. kl., dernæst forskelle i opmærksomhed på sproglyde og sidst forskelle i bogstavkendskab.

4.4.4.1.2 Det fonologiske afstandsmål af tidlig læsning, som forudsiger af læsning i 1. kl.

Tabel 4.11 viser modellen med detaljer for læsning i 1. kl. Antagelserne for den multiple hierarkiske regressionsanalyse blev undersøgt efter samme princip som i afsnit 4.4.4.1.1. Alle antagelser var overholdt.
Den fulde model, som bruger opmærksomhed på sproglyde, bogstavkendskab og tidlig læsning i børnehaveklassen (Model 2 i Tabel 4.11) til at forudsige læsning i 1. kl., var signifikant, $R^2 = .509$, $F(3, 88) = 30,458$, $p < .001$, tilpasset $R^2 = .493$.

Tilføjelsen af opmærksomhed på sproglyd og bogstavkendskab i børnehaveklassen til at forudsige læsning i 1. kl. (Model 1 Tabel 4.11) leder til en signifikant forøgelse af R^2 på $\Delta R^2 = .486$, $F(2, 89) = 42,130$, $p < .001$.

Tilføjelsen af tidlig læsning i børnehaveklassen til at forudsige læsning i 1. kl. (Model 2 Tabel 4.11) leder til en signifikant forøgelse af R^2 på $\Delta R^2 = .023$, $F(1, 88) = 4,141$, $p = .045$.

Tabel 4.11

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Læsning i 1. kl.</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>61,90**</td>
<td>41,94**</td>
<td></td>
</tr>
<tr>
<td>OPS</td>
<td>8,24**</td>
<td>.64</td>
<td>6,74**</td>
</tr>
<tr>
<td>Bogstavkendskab</td>
<td>-5,86</td>
<td>-1,62</td>
<td>-1,90</td>
</tr>
<tr>
<td>FA læsning</td>
<td>13,44**</td>
<td>13,44**</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>.49</td>
<td>.51</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>42,13**</td>
<td>30,46**</td>
<td></td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.49</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>ΔF</td>
<td>42,13**</td>
<td>4,14*</td>
<td></td>
</tr>
</tbody>
</table>

*Logtransformeret score.

**Vendt og logtransformeret score.

Det fonologiske afstandsmål af tidlig læsning forklarer unik variation i læsning i 1. kl. Tidlig læsning gør modellen (Model 2 Tabel 4.11) signifikant bedre til at forudsige variation i læsning i 1. kl., $p = .045$ og forklarer 2% unik variation i læsning i 1. kl., når der er redegjort for de 51% variation, som det sammensatte mål af opmærksomhed på sproglyd og målet af bogstavkendskab tilsammen forklarer.

I den fulde model, hvor både opmærksomhed på sproglyd, bogstavkendskab og tidlig læsning er inddraget for at forklare forskelle i læsning i 1. kl., er det kun forskelle i opmærksomhed på sproglyd og tidlig læsning, der bidrager signifikant til at forudsige forskelle i læsning i 1. kl. En enheds højere score i læsning (logtransformeret skala) er forbundet med 13,44 procentpoint højere score i læsning i 1. kl. mens en enheds højere score i opmærksomhed på sproglyd (z-score) er forbundet med 6,74 procentpoint højere score i læsning i 1. kl. De standardiserede beta-koefficienter måles i enheder af standardafvigelse. Derfor kan størrelsen af disse, ligesom ved forudsigelsen af stavning, sammenlignes direkte. For opmærksomhed på sproglyd hænger en forøgelse af børnehaveklassescoren på en standardafvigelse sammen med, at læsning i 1. kl. stiger med 0,53 procentpoint. For samme forøgelse af læsescoren i børnehaveklassen stiger læsning i 1. kl. med 0,23 procentpoint. En ændring i opmærksomhed på sproglyd hænger således sammen med en større ændring i læsning i 1. kl., end den samme ændring i tidlig læsning gør.

4.4.4.1.3 Det fonologiske afstandsmål af læsning, som forudsiger af stavning i 1. kl. De gennemgåede multiple hierarkiske regressionsanalyser viser, at begge fonologiske afstandsmål bidrager unikt til forudsigelsen af senere samme færdighed. De har dog ikke besvaret, om både målet af tidlig læsning og børnestavning er væsentlige for forudsigelsen af begge færdigheder i 1. kl., eller om det ene mål overflødiggør det andet. De to mål er meget stærkt korreleret ($r = .74$), hvilket tyder på, at de i høj grad
måler samme færdighed. Hvis de derfor forklarer variation ud over hinanden, kunne det tyde på, at det, de ikke har til fælles, er væsentligt for forudsigelsen af henholdsvis læsning og stavning i 1. Kl.

For at belyse dette bruger jeg igen hierarkiske multiple regressionsanalyser. I trin 1 tilføjer jeg for forudsigelsen af stavning opmærksomhed på sproglyd, bogstavkendskab og børnestavning og i trin 2 det fonologisk afstandsmål af tidlig læsning. For forudsigelsen af læsning er prædiktorerne i trin 1 opmærksomhed på sproglyd, bogstavkendskab og tidlig læsning og i trin 2 det fonologiske afstandsmål af børnestavning.

Tabel 4.12

Multipel hierarkisk regression forudsiger stavning i 1. kl. fra opmærksomhed på sproglyde, bogstavkendskab, børnestavning og tidlig læsning i børnehaveklassen.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Stavning i 1. kl.</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>β</td>
<td>B</td>
</tr>
<tr>
<td>Konstant</td>
<td>42,40**</td>
<td></td>
<td>32,94**</td>
</tr>
<tr>
<td>OPS</td>
<td>2,72*</td>
<td>.27</td>
<td>2,16*</td>
</tr>
<tr>
<td>Bogstavkendskab</td>
<td>-11,07*</td>
<td>.25</td>
<td>-9,47*</td>
</tr>
<tr>
<td>FA stavning</td>
<td>0,25*</td>
<td>.36</td>
<td>0,19*</td>
</tr>
<tr>
<td>FA læsning</td>
<td></td>
<td></td>
<td>8,95(*l)</td>
</tr>
<tr>
<td>R²</td>
<td>0,57</td>
<td></td>
<td>0,59</td>
</tr>
<tr>
<td>F</td>
<td>39,40**</td>
<td></td>
<td>30,94**</td>
</tr>
<tr>
<td>∆R²</td>
<td>0,57</td>
<td></td>
<td>0,01(*l)</td>
</tr>
<tr>
<td>∆F</td>
<td>39,40**</td>
<td></td>
<td>2,94</td>
</tr>
</tbody>
</table>

Note. n=92, OPS=opmærksomhed på sproglyde, FA=fonologisk afstandsscore, *(p<.1, *p<.05, **p<.001.

aLogtransformeret score.
bVendt og logtransformeret score.

Tabel 4.12 viser modellen med detaljer for stavning i 1. kl. Antagelserne for den multiple hierarkiske regressionsanalyse blev undersøgt efter samme princip som i afsnit 4.4.4.1. Alle antagelser var overholdt.

Den fulde model, som bruger opmærksomhed på sproglyde, bogstavkendskab, børnestavning og tidlig læsning i børnehaveklassen (Model 2 Tabel 4.12) til at forudsige stavning i 1. kl., var signifikant, R²=.59, F(4,87) = 30,94, p <.001, tilpasset R²=.57.

Tilføjelsen af tidlig læsning i børnehaveklassen til at forudsige stavning i 1. kl. (Model 2 Tabel 4.12) viser, at tidlig læsning ikke bidrager signifikant til forudsigelsen af stavning med en forøgelse af R² på ∆R²=.014, F(1,87) =2,94, p =.090.

Det fonologiske afstandsmål af tidlig læsning gør forudsigelsen af stavefærdighed i 1. kl. knap 1,5 % mere sikker, end forudsigelsen var uden dette mål. Denne forskel er med p =.090 ikke signifikant, men kun marginalt signifikant. Med inddragelsen af tidlig læsning i model 2 (se Tabel 4.12), som kun er en marginalt signifikant prædiktor, kan de andre prædiktorer fortsat siges at være signifikant lineært forbundet til stavning i 1. kl. Et procentpoint højere score i stavning i børnehaveklassen er forbundet med 0,19 procentpoint bedre stavescoren i 1. kl. Bedre bogstavkendskabs i børnehaveklassen er forbundet med bedre stavescore i 1. kl.6 Det samme gælder for sammenhængen mellem opmærksomhed på sproglyd og stavescoren i 1. kl. Forskel i tidlig læsning i børnehaveklassen er ikke signifikant forbundet til forskelle i stavning i 1. kl., men den positive beta-koefficient tyder på en tendens til, at bedre tidlig læsning er forbundet til bedre stavning i børnehaveklassen. De standardiserede beta-koefficenter viser, at én

6 Målet er vendt og transformeret, hvorfor en negativ beta-koefficient tyder på en positiv sammenhæng.
standardafvigelses fremgang i børnestavning, med en koefficient på 0,28, hænger sammen med en numerisk større ændring i stavning i 1. kl., end den samme fremgang i opmærksomhed på sproglyde og bogstavkendskab gør, og at tidlig læsning har den laveste standardiserede beta-koefficient og derfor er forbundet med mindst, og ikke signifikant, fremgang i stavning i 1. kl.

4.4.4.1.4 Det fonologiske afstandsmål af børnestavning som forudsiger af læsning i 1. kl.

Tabel 4.13 viser modellen med detaljer for læsning i 1. kl. Antagelserne for den multiple hierarkiske regressionsanalyse blev undersøgt efter samme princip som i afsnit 4.4.4.1.1. Alle antagelser var overholdt.

Tabel 4.13
Multipel hierarkisk regression forudsiger læsning i 1. kl. fra opmærksomhed på sproglyd, bogstavkendskab, tidlig læsning og børnestavning i børnehaveklasse.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Model 1</th>
<th>Læsning i 1. kl.</th>
<th>Model 2</th>
<th>Læsning i 1. kl.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>β</td>
<td>B</td>
<td>β</td>
</tr>
<tr>
<td>Konstant</td>
<td>41,94**</td>
<td>.53</td>
<td>31,21*</td>
<td>.39</td>
</tr>
<tr>
<td>OPS</td>
<td>6,74**</td>
<td>.53</td>
<td>4,99**</td>
<td>.39</td>
</tr>
<tr>
<td>Bogstavkendskab<sup>b</sup></td>
<td>-1,62</td>
<td>.03</td>
<td>3,11</td>
<td>.05</td>
</tr>
<tr>
<td>FA læsning<sup>a</sup></td>
<td>13,44*</td>
<td>.23</td>
<td>4,98</td>
<td>.08</td>
</tr>
<tr>
<td>FA stavning</td>
<td></td>
<td></td>
<td>0,33*</td>
<td>.38</td>
</tr>
<tr>
<td>R²</td>
<td>.51</td>
<td></td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>30,46**</td>
<td></td>
<td>27,58**</td>
<td></td>
</tr>
<tr>
<td>ΔR²</td>
<td>.51</td>
<td></td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>ΔF</td>
<td>30,46**</td>
<td></td>
<td>9,80*</td>
<td></td>
</tr>
</tbody>
</table>

^alogtransformeret score.

^bvendt og logtransformeret score.

Den fulde model, som bruger opmærksomhed på sproglyde, bogstavkendskab, tidlig læsning og børnestavning i børnehaveklasse (Model 2 Tabel 4.13) til at forudsige læsning i 1. kl., var signifikant, R² =.56, F(4, 87) =27,58, p <.001, tilpasset R²= 0,54.

Tilføjelsen af børnestavning i børnehaveklasse til at forudsige læsning i 1. kl. (Model 2 Tabel 4.13) betyder en signifikant forøgelse af R² på ΔR² =.05, F(1, 87) =9,799, p =.002.

Det fonologiske afstandsmål af børnestavning forklarer unik variation i læsefærdighed i 1. kl. Inddragelsen af børnestavning gør forudsigelsen af læsefærdighed 5 % mere sikker, end forudsigelsen var uden. Denne forskel er signifikant, p =.002. I model 2 (Tabel 4.13) er det kun hældningskoefficienten for opmærksomhed på sproglyd og stavning, der er signifikant forskellig fra nul, og det er derfor kun disse prædiktorer, der med statistisk sikkerhed kan siges at være lineært forbundet til læsning i 1. kl. Et procentpoint bedre børnestavning i børnehaveklasse er forbundet til 0,33 procentpoint bedre læsning i 1. kl., mens en enheds højere score i opmærksomhed på sproglyd (z-score) i børnehaveklasse er forbundet til 4,98 procentpoint bedre læsning i 1. kl. For tidlig læsning og bogstavkendskab er der i model 2 (Tabel 4.13) ikke lineær sammenhæng med læsescoren i 1. kl. De standardiserede beta-koefficients viser, at én standardafvigelses fremgang i børnestavning, med en koefficient på β =.38, hænger sammen med en næsten identisk, men numerisk lidt mindre ændring i læsning i 1. kl. end den samme fremgang i opmærksomhed på sproglyde (β =.39). Tidlig læsning og bogstavkendskab bidrager ikke signifikant til forudsigelsen af læsning i 1. kl., og den standardiserede beta-koefficient er også meget lav.
4.4.4.2 Opsamling om børnestavning og tidlig læsnings unikke bidrag til senere stavning og læsning

Som en enkel sammenligning med resultaterne fra tidligere studier (se Tabel 4.1) præsenteres resultaterne for de fire undersøgte kategorier: børnestavning og læsning i børnehaveklassen som unikke prædiktorer af henholdsvis stavning og læsning i 1. kl. i Tabel 4.14.

Tabel 4.14
Oversigt over resultatet i Studie 2, der undersøger børnestavning og tidlig læsning som unikke prædiktor af stavning og læsning i 1.kl.

<table>
<thead>
<tr>
<th>Færdighed</th>
<th>1.kl.</th>
<th>Forklarer tidlig færdighed unik variation i senere færdighed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Børnestavning</td>
<td>Stavning</td>
<td>Tabel 4.10, uderover OPS, BK</td>
</tr>
<tr>
<td>Læsning</td>
<td>Tabel 4.12, uderover OPS, BK, FA læsning</td>
<td></td>
</tr>
<tr>
<td>Tidlig læsning</td>
<td>Stavning</td>
<td>Tabel 4.13, uderover OPS, BK, FA læsning</td>
</tr>
<tr>
<td>Læsning</td>
<td>Tabel 4.11, uderover OPS, BK</td>
<td></td>
</tr>
</tbody>
</table>

*Note. OPS=opmærksomhed på sproglyde, BK=bogstavkendskab, FA=fonologisk afstandsscore

af statistisk marginalt signifikant, p <,1.

Af Tabel 4.14 fremgår det, at børnestavning er en unik prædiktor af læsning og stavning i 1. kl., uanset om der tages højde for tidlig læsning eller ej, mens tidlig læsning kun er en unik prædiktor af læsning i 1 kl., når målet ikke skal forklare variation ud over børnestavning. **Tidlig læsning** er ikke en unik prædiktor af senere stavning, men resultatet er marginalt signifikant.

4.5 Diskussion. Studie 2

Det første forskningsspørgsmål (se afsnit 4.2) sammenligner, hvor stærkt den **fonologiske** henholdsvis ortografiske kvalitet i børnestavning samt tidlig læsning er forbundet til stavning henholdsvis læsning i 1. kl.

Det næste forskningsspørgsmål (se afsnit 4.2) undersøger det unikke bidrag fra børnestavning samt tidlig læsning til stavning samt læsning i 1. kl. Forskningsspørgsmålet besvares for de fire sammenhænge én sammenhæng ad gangen.

4.4.5 Fonologisk afstandsscore eller binær ortografisk score?

I midten af børnehaveklassen er de fleste børn i indværende studie ikke-læsere, og de staver meget få ord korrekt (se afsnit 4.4.2). For meget svage stavere har tidligere studier (fx Treiman m.fl., 2019) fundet, at **fonologiske** scoringsmetoder er stærkere forbundet til senere stavning end binære ortografiske metoder. På den baggrund forventede jeg, at det **fonologiske** mål af børnestavning ville være stærkere forbundet til senere stavning end det binære ortografiske mål. Med udgangspunkt i teorier om udvikling af stavning og læsning (se afsnit 4.2 for argumentet) er der muligt, at sammenhængen er den samme mellem tidlig læsning og senere læsning. Hypotesen bag forskningsspørgsmål 1 var på den baggrund, at det **fonologiske**
afstandsmål af tidlige færdigheder ville være stærkere forbundet til senere samme færdighed end det binære ortografiske mål.

Sammenligningen af ét sæt af korrelationer for henholdsvis stavning og læsning i 1. kl. danner grundlag for besvaret af forskningsspørgsmål 1. Sættet består i to simple korrelationer: dels den for sammenhængen mellem de fonologiske afstandsmål og samme færdighed i 1. kl. og dels den mellem de binære ortografiske mål og samme færdighed i 1. kl. (Tabel 4.8).

Sammeligningen viser, at de fonologiske afstandsmål er signifikant bedre til at forklare forskelle i samme færdighed i 1. kl. end de binære ortografiske mål. Hypotesen for forskningsspørgsmål 1 bekræftes af den signifikante fordel for det fonologiske afstandsmål over det binære ortografiske mål.

Dette er i evidens for, at fonologiske afstandsmål af børnestavning og tidlig læsning er signifikant stærkere forbundet til senere stavning og læsning end binære ortografiske mål midt i børnehaveklassen, hvor børnene kun i et halvt års tid har beskæftiget sig med bogstaver og sproglyde. For børnestavning er de binære ortografiske mål på dette tidspunkt, imodsætning til de fonologiske afstandsmål, stærkt påvirket af gulveffekt (se afsnit Histogrammer). For den tidlige læsning har det binære ortografiske mål, hvor over 80 % af børnene scorede nul, endnu stærkere tendens til gulveffekt. Det fonologiske afstandsmål af læsning har også en højreskæv fordeling, men kun omkring 1 % af børnene havde en score på nul med denne scoringsmetode. De stærke gulveffekter i de binære ortografiske mål indikerer, at fordelen til den fonologiske fortidning af fordelingen findes på et tidspunkt, hvor både stave- og læsefærdigheder er spæde.

Dette resultat er i overensstemmelse med fund af Treiman og kollegaer (2016; 2019) om børnestavnings forbindelse til senere stavning. Som tidligere diskuteret (se afsnit 4.13.3.1.1), så kan fordelen til det fonologiske afstandsmål, blandt meget svage eller tidlige stavere, ikke skelnes fra gulveffekt i de binære ortografiske mål af børnestavning i disse studier. Det betyder, at fordelen til det fonologiske mål, fordi det er mindre påvirket af gulveffekt, ikke entydig kan tolkes som en fordel til scoringsmetoden, da fordelen også kan tilskrives, at det fonologiske afstandsmål indfanger mere variation. Fordelen er i det fonologiske afstandsmål uden gulveffekt over det binære ortografiske mål med gulveffekt kan derfor både skyldes en fordel i typen (scoringsmetoden) og mængden (graden af gulveffekten) af variation, målender indfanger.

Indeværende studie har samme dobbelte forskel indbygget, da der er mere gulveffekt i de binære ortografiske mål end i de fonologiske afstandsmål af børnestavning og tidlig læsning. Det betyder, at det ortografiske måls signifikant svagere forbindelse til senere samme færdighed ikke er evidens for, at dette mål ikke er stærkere forbundet til senere samme færdighed, hvis tidlige færdigheder måles fx i slutningen af børnehaveklassen. Dette spørgsmål belyser indeværende studie dog ikke.

gulveffekt til at kunne skelne mellem børnenes viden om skriftens ydre karakteristika, hvorfor det fonologisk mål, som i højere grad indfanger forskelle mellem børnene, er tættest knyttet til senere stavning og læsning, til trods for at det ikke indfanger forskelle i børnenes viden om skiftens ydre form.

Den fordel, som indeværende studie finder til den fonologiske scoringsmetode over den binære ortografiske scoringsmetode, er et væsentligt resultat. Dels fordi det udvider evidensen fra studier på engelsk til en dansk kontekst, om en fordel til fonologiske afstandsmål af børnestavning over binære ortografiske mål, når kvaliteten i børnestavning måles midt i børnehaveklassen, mens få børn staver mange ord korrekt. Dels er resultatet væsentligt, da det bekræfter, i overensstemmelse med teorier om udviklingen af læsning og stavning (se afsnit 4.2 for argumentet), at det samme gør sig gældende for tidlig læsning.

Samtidig bekræfter resultatet, at for børn tidligt i deres stave- og læseudvikling, er den fonologiske kvalitet af børnestavning og tidlig læsning, her tolket som udtryk for børnenes viden om det alfabetiske princip, forbundet stærkt eller moderat til senere læse- henholdsvis stavefærdighed. Fordi det binære ortografiske mål i indeværende studie ikke kan skelnes fra gulveffekt, kanfordelen i indeværende studie dog ikke tolkes som evidens for, at de forskelle, som ortografiske mål, der er mindre påvirket af gulveffekt, ville kunne indfange, ikke er væsentlige for senere læse og stavefærdighed.

Endvidere er resultatet væsentligt for den fonologiske scoringsmetode af tidlig læsning i indeværende studie. Da den computergenererede fonologiske afstandsscore i indeværende studie er en scoringsmetode udviklet til dette studie (se afsnit 3.4.3.1.2), er resultatet første evidens for, at denne scoringsmetode kan indfange forskelle blandt børnene i deres tidlige læsning, mens 80% af børnene endnu ikke kan læse ét ord, og at forskellen i score er moderat stærkt forbundet til senere læsning. Samtidig er styrken af forbindelsen til senere læsning signifikant stærkere end den mellem antal korrekt læste ord og senere læsning.

Fordi dette studie både inkluderer et mål af børnestavning og tidlig læsefærdighed, er det relevant, om målene af disse færdigheder faktisk blot er to måder at måle det samme på, eller om målene af de to færdigheder faktisk måler noget forskelligt. En mulighed er at begge måler er summen af opmærksomhed på sproglyde og bogstavkendskab, eller at begge måler børnenes viden om det alfabetiske princip.

Selvom der er grundlag for, at de fonologiske afstandsmål har samstemmende (se afsnit 4.4.3.1) og forudsigende (se afsnit 4.4.3.2) målevaliditet, så er det på baggrund af de simple korrelationer usikkert, om de fonologiske afstandsmål af læsning og stavning i børnehaveklassen måler adskilte færdigheder. Dels er
deres indbyrdes korrelation høj \(r = 0.74 \) (se Tabel 4.7), og dels er styrken af sammenhængen med læsning og stavning i 1. kl. meget ens for målet af børnestavning \((r = 0.70 \text{ og } 0.69) \) og i nogen grad også for målet af tidlig læsning \((r = 0.67 \text{ og } 0.60) \) (se Tabel 4.7). Med disse sammenhænge kan det i hvert fald ikke afvises, at meget af variationen i de to mål er den samme. Den delte variation indikerer, at begge mål er følsomme for forskelle i samme underliggende færdigheder, og at tilegnelsen af disse færdigheder forklarer forskelle i læsning og stavning i 1. kl. På baggrund af de simple korrelationer er det således klart, at de fonologiske afstandsmål af **tidlig læsning** og **børnestavning** i høj grad måler noget ens, som for begge mål er sammenligneligt stærkt knyttet til senere læsning og stavning. De simple korrelationer kan dog ikke belyse, om **tidlig læsning** og **børnestavning** også måler noget unikt, som er væsentligt for senere senere læsning og stavning. Dette belyses under næste forskningsspørgsmål.

4.4.6 Børnestavning og tidlig læsning som unikke prædiktorer?
Bidraget til stavning og læsning i 1. kl. fra den fonologiske kvalitet af **børnestavning** og **tidlig læsning** er emnet for dette afsnit, hvor resultaterne fra de fire multiple hierarkiske regressionsanalysen præsenteret i afsnit 4.4.4 bruges til at besvare det andet forskningsspørgsmål i Studie 2. Som foreslået, kan det ikke afvises, at forståelsen af de to færdigheder forklarer forskelle i læsning og stavning i 1. kl. På baggrund af de simple korrelationer er det således klart, at de fonologiske afstandsmål af **tidlig læsning** og **børnestavning** i høj grad måler noget ens, som for begge mål er sammenligneligt stærkt knyttet til senere læsning og stavning. De simple korrelationer kan dog ikke belyse, om **tidlig læsning** og **børnestavning** også måler noget unikt, som er væsentligt for senere senere læsning og stavning. Dette belyses under næste forskningsspørgsmål.

4.4.6.1 Børnestavning som unik prædiktor af senere stavning

Børnestavning bidrager ud over bogstavkendskab og opmærksomhed på sprog at forudsige afstandsmålet af **børnestavning** og **tidlig læsning**. Dette resultat bekræfter for sammenhængen mellem **børnestavning** i børnehaveklassen og stavning i 1. kl. det andet forskningsspørgsmål i Studie 2, idet resultatet bekræftes hypotesen om, at den fonologiske kvalitet af **børnestavning** er en unik prædiktor af senere stavning.

Dette resultat er væsentligt dels af teoretiske og dels af praktiske årsager.

Teoretisk bidrager resultatet til evidensen fra tidligere studier om, at den fonologiske kvalitet af **børnestavning** bidrager ud over bogstavkendskab og opmærksomhed på sprog at forudsige af standsmålet af **børnestavning** i 1. kl. Dette indikerer, at den fonologiske kvalitet af **børnestavning** i børnehaveklassen i sig selv er væsentlig for forudsigelsen af stavning i 1. kl. En mulig tolkning af det unikke bidrag er, at forskelle mellem børnene i den fonologiske kvalitet i deres **børnestavning** i sig selv er væsentlig for senere stavning. I denne sammenhæng er **børnestavning** ikke blot summen af de to færdigheder. Sénéchal (2017) foreslår, at den integration af opmærksomhed på sprog og bogstavkendskab, som hun mener, børnene laver, når de børnestaver, er nøglen til at børnene tilegner sig viden om det alfabetiske princip og begyndende ortografiske repræsentationer, som hjælper læsningen og deraf stavning på vej. Frost (2001) kalder denne integration af opmærksomhed på sprog og bogstavkendskab for **funktionelt bogstavkendskab** og udpeger den, ligesom Sénéchal (2017), som afgørende for udviklingen af stave- og læsefærdighed. En mulig forklaring på, hvorfor den fonologiske score af **børnestavning** er en unik prædiktor af senere stavning, er i det perspektiv, at scoren kan registrere forskelle mellem børnene i deres viden om alfabetiske principer, hvorfor den tidlig i børnenes staveudvikling indfanger variation, der er væsentlig for senere korrekt stavning.

I et praksissperspektiv er resultatet væsentligt, da det bekræfter, at **børnestavning** allerede fra midten af børnehaveklassen kan give en bedre forudsigelse af senere stavning end bogstavkendskab og opmærksomhed på sprog alene. Dette peger på, at der i en dansk sammenhæng kan være perspektiver
i at inddrage tidlige mål af den fonologiske kvalitet af børnestavning i vurderingen af, hvordan barnet udvikler sin stavning og kommer til at klare sig i 1. kl. Det skyldes dels, at de ufuldstændige stavemåder faktisk bidrager til at forklare forskelle i stavning i 1. kl. ud over det, som opmærksomhed på sproglyde og bogstavkendskab forklarer, dels at børnestavning er meget enkle at inddrage tidlige mål af den fonologiske kvalitet af børnestavning i vurderingen af, hvordan barnet udvikler sin stavning og kommer til at klare sig i 1. kl. Det skyldes dels, at de fuldstændige stavemåder faktisk bidrager til at forklare forskelle i stavning i 1. kl. ud over det, som opmærksomhed på sproglyde og bogstavkendskab forklarer, dels at børnestavning er meget enkle at indsamle og kan opgøres som en fonologisk afstandsscore automatisk og meningsfuldt med pontosoftwaren (Kessler, 2009). Man får således en bedre forudsigelse med en minimal indsats. Det er i dette perspektiv væsentligt, at både opmærksomhed på sproglyde og bogstavkendskab fortsat forklarer unik variation i senere stavning, og at stavemålet således ikke overflødiggør disse mål som væsentlige mål for forudsigelsen af senere stavning.

Resultatet er i overensstemmelse med flere studier, der har fundet, at børnestavning er en unik prædiktor af senere stavning (se Tabel 4.1). Men fundene i tidligere studier er ikke entydige (se afsnit 4.1.3.3). Tendensen på tværs af studier er dog, at mål af børnestavning uden gulv-/loftseffekt forklarer unik variation i senere stavning. Når målet af børnestavning er påvirket af gulvseffekt, så er målet en unik prædiktor, når det ikke skal forklare variation ud over for mange andre prædiktorer, og antallet af deltagere i studiet ikke er for lavt. Der er begyndende evidens for, at en scoringsmetode baseret på korrekthed har en fordel over en fonologisk scoringsmetode. Dette er dog alene baseret på to fund. Det ene af disse er Caravolas m.fl. (2001) (se Tabel 4.4), der finder, at børnestavning målt i midten af 1. kl. med en ortografisk score er en unik prædiktor af senere stavning, mens et fonologisk mål ikke er. Dette er resultatet er ikke direkte sammenligneligt med indeværende studie resultat, simpelthen fordi børnestavning måles tidligere i børnenes staveudvikling i indeværende studie. Fordi indeværende studie valgte at anvende det mål af børnestavning i regressionsanalyserne, der var stærkest forbundet til senere stavning, er det ikke klart, om målet baseret på korrekthed kan forklare unik variation i senere stavning til trods for gulvseffekt, som tilfældet er i Kim og Petscher (2011).

Fra studier, der sammenligner ortografiske og fonologiske metoders evne til at forklare forskelle i senere stavning (Treiman m.fl., 2016; Treiman m.fl., 2019) med simple korrelationer, er der evidens for, at ortografiske binære mål har en fordel fra slutningen af børnehaveklassen og i 1. kl., mens fonologiske ikke-binære mål har en fordel i midten af børnehaveklassen. For de indeværende studie er børnenes børnestavning målt i midten af børnehaveklassen. Derfor er resultatet i dette studie i overensstemmelse med resultaterne fra Treiman og kollegas studier (2016, 2019), der peger på, at børnestavning, målt med et fonologisk mål, er stærkere forbundet til senere stavning end et binært ortografisk mål i midten af børnehaveklassen.

Karakteristika ved målet af børnestavning, som i dette studie forklarer unik variation i senere stavning, stemmer overens med de tendenser, der blev fundet på tværs af studier, nemlig at et fonologisk mål af børnestavning, der ikke er påvirket af gulvseffekt, forklarer unik variation i senere stavning.

Dette studie undersøger ikke det unikke bidrag fra det ortografiske mål, da dette, vurderet ved simple korrelationer, var mindre stærkt forbundet til senere stavning. Derfor er resultatet af regressionsanalysen alene evidens for den fotologiske scoringsmetodens evne til at forklare unik variation i senere stavning.

Fordi det er et fonologisk mål af børnestavning, der er en unik prædiktor, er der i dette studie støtte til den centrale rolle som forskelle i børnenes viden om det alfabetiske princip har for udviklingen af stavning (Ehri, 2005). Det er dog ikke ensbetydende med, at børnenes viden om skriftens ydre form er ikke-eksisterende eller uvæsentlig på dette tidspunkt i udviklingen af stavning. Pollo m.fl. (2009) har vist, at børns før-fonologiske stavning er motiveret af viden om skriftens ydre form. Fordi indeværende studie sammenligner et binært ortografisk mål af børnestavning med et ikke-binært fonologisk, kan det ikke afvises, at et ikke-binært ortografisk mål havde været stærkere knyttet til senere stavning og dermed også kunne have forklaret mere unik variation i senere stavning, end det tilsvarende ikke-binære fonologiske mål. Der er
ingen studier i Tabel 4.4, som undersøger et ikke-binært ortografisk måls evne til at forklare senere stavning. Hvis et sådant mål er bedre end det fonologiske mål, vil det understøtte, at mål af børnestavning, der også er følsomme for forskelle mellem børnene i deres viden om skriftens ydre form, som Pollo m.fl. (2009) finder motiverer før-fonologiske stavemåder, danner grundlag for at forklare senere forudsigelser af senere stavning. Dette ville understøtte, at forskellene i børnestavning, som et mål baseret på korrekt tidligt i børnenes staveudvikling indfanger, også er væsentlige for senere stavning. Dette har endnu til gode at blive undersøgt.

4.4.6.2 Tidlig læsning som unik prædiktor af senere læsning

Tidlig læsning bidrager ud over bogstavkendskab og opmærksomhed på sproglyde til forudsigelsen af læsning i 1. kl. (se Tabel 4.11) med 2 % unik variation. Dette resultat besvarer for sammenhængen mellem tidlig læsning i børnehaveklassen og læsning i 1.kl. det andet forskningsspørgsmål i Studie 2, idet resultatet bekræfter hypotesen om, at den fonologiske kvalitet af tidlig læsning er en unik prædiktor af senere læsning.

Dette resultat er væsentligt dels af teoretiske og dels af praktiske årsager.

Resultatet fra indeværende studie bidrager til den begrænsede viden om disse sammenhænge fra tidligere studier, der undersøger, om den fonologiske kvalitet i tidlig læsning er en unik prædiktor af senere læsning. I tidligere studier er tidlig læsning i vid udstrækning en unik prædiktor af senere læsning (se Tabel 4.2). Dog bruger samtlige studier en binær ortografisk score, men to studier bruger også en ikke-binær fonologisk score (Caravolas m.fl., 2001; Lazo m.fl., 1997). I det ene studie forklarer den fonologiske score ikke unik variation i senere læsning på et tidspunkt, hvor det binære ortografiske mål gør (Lazo m.fl., 1997). De simple korrelationer fra indeværende studie understøtter dog modsat, at på et tidspunkt i børnenes læseudvikling, hvor den binære ortografiske score er stærkt påvirket af gulveffekt, over 80 % af deltagere scorer nul, er den ikke-binære fonologiske score, som er mindre påvirket af gulveffekt, stærkere forbundet til senere læsning (se Tabel 4.8). Derfor undersøger dette studie i modsætning til studierne i Tabel 4.2 alene det ikke-binære fonologiske måls evne til at forklare unik variation i senere læsning på et tidspunkt i læseudviklingen, hvor mange børn endnu er ikke-læsere. Indevarierende studie finder evidens for, at det fonologiske mål af tidlig læsning er en unik prædiktor på et tidspunkt, hvor mere end 4/5 af børn er ikke-

Caravolas m.fl. (2001) argumenterer for, at deres to mål af tidlig læsning i midten af børnehaveklassen ikke måler noget forskelligt, da børnenes læsning samt deres anvendelse af viden om bogstaverne lyde og deres opmærksomhed på sproglyde i læsning er så spændende, at deres oplæsning enten er en genkendelse af hele ordet eller intet, hvorfor de to mål opfører sig ens på dette tidlige tidspunkt, til trods for at det fonologiske mål er mindre påvirket af gulveffekt. De to mål af tidlig læsning korrelerer dog også meget stærkt (r =,90).

Indeværende studie er således evidens for, at det med en fonologisk afstandsscore er muligt at indfange variation blandt elever meget tidligt i deres udvikling af læsefærdighed, som kan forklare unik variation i senere læsning (se Tabel 4.11), og som er stærkere forbundet til senere læsning end et binært ortografisk mål (se Tabel 4.8). Dette fund passer ikke godt med Caravolas m.fl.s (2001) forklaring. En anden forklaring på resultatet i Caravolas m.fl. (2001) kan derfor være knyttet til den lavere andel af læsere i indeværende studie. Det er muligt, at et fonologisk mål kun har en fordel som prædiktor af senere læsning meget tidligt i læseudviklingen, mens en stor andel af børn fortsat scorer nul med en ortografisk score. Det ville være i overensstemmelse med resultaterne i indeværende studie og også i overensstemmelse med de resterende studier i Tabel 4.2, der alle med et ortografisk mål af tidlig læsning, som ikke er for massivt påvirket af gulveffekt, forklarer unik variation i senere læsning. Denne mulige forklaring ville kunne efterprøves ved at følge børnenes tidlige læsning fra børnehaveklassens start til børnehaveklassens afslutning og lade tidlig læsning med en fonologisk score og en score baseret på korrekthed forklare unik variation i senere læsning. Så ville det blive klart, om dette skift fra en fordel til fonologiske til en fordel til ortografiske mål kan findes iden for rammerne af det samme studie.

Det ortografiske mål af tidlig læsning er i studierne i Tabel 4.2 en meget stabil prædiktor af senere læsefærdighed. Dette tyder på, at den variation, som dette mål indfanger, er væsentlig for senere læsning, selv når målet til en vis grænse er mere påvirket af gulveffekt end et fonologisk mål. Så selv om indeværende studie har vist, at børnenes integration af deres viden om opmærksomhed på sproglyde og
bogstavkendskab, som måles med fonologiske scoringsmetoder, er en unik prædiktor af senere læsefærdighed og dermed er mere end blot opmærksomhed på sproglyde og bogstavkendskab, så tyder studierne i Tabel 4.2, at tidlig læsning baseret på korrekthed meget tidligt indfanger variation, der gør det til en unik, og måske mere relevant prædiktor af senere læsefærdighed end det fonologiske mål.

I et praksisperspektiv er resultaterne interessante, da resultatet bekræfter, at tidlig læsning allerede fra midten af børnehaveklassen kan give en bedre forudsigelse af senere læsning end bogstavkendskab og opmærksomhed på sproglyde alene. Dette peger på, at der i en dansk sammenhæng kan være perspektiver i at inndrage tidlige mål for læsning i vurderingen af senere læsning. Dog er forbedringen af forudsigelsen kun 2 % og endnu ikke efterprøvet. Dette betyder, at der forsøt er behov for at belyse dette måls bidrag til senere læsning, idet det kan anbefales at bruge denne type mål af tidlig læsning i praksis. Et muligt perspektiv for det fonologiske mål af tidlig læsning er at undersøge om det kan være et redskab til at forudsigende, hvilke børn der er i risiko for at udvikle læsevanskeligheder. I forbindelse med udviklingen af Ordbinderisikotesten (Gellert og Elbro, 2016), som er et dansk testmateriale, der er udviklet til i børnehaveklassen at kunne identificere børn i risiko for at udvikle ordblindhed, fastslår forskerne, at et sikkert mål for at være uden risiko er, at børnene kan læse ord. Etableret ordlæsning er dermed en meget god forudsiger af ikke-risikobørn. Læsescore som i dette studie, der prøver at tildele børnene en score, også for ikke-fuldstændige oplæsningsforsøg, kan måske vise sig at være væsentlige for forudsigelsen af risikobørn.

Resultaterne for børnestavning som unik prædiktor af senere stavning og tidlig læsning som unik prædiktor af senere læsning ligner hinanden. Det kan tyde på, at målene, som diskuterer under de simple korrelationer (se afsnit 4.4.6.1), måler samme underliggende færdighed, og de dermed kan forstås som forskellige metoder til at måle denne. For at komme tættere på dette er analyserne med børnestavning og tidlig læsning, som samtidige prædiktorer af senere læsning og stavning, væsentlige.

4.4.6.3 Børnestavning og tidlig læsning som prædiktorer af senere læsning

Børnestavning bidrager ud over bogstavkendskab, opmærksomhed på sproglyde og tidlig læsning til forudsigelsen af læsning i 1. kl. (se Tabel 4.13) med 5 % unik variation, men tidlig læsning forklarer ikke unik variation i læsning i 1. kl., når børnestavning er i modellen. Dette resultat besværer for sammenhængen mellem børnestavning og tidlig læsning i børnehaveklassen og læsning i 1. kl. det andet forskningsspørgsmål i Studie 2, idet resultatet bekræfter hypotesen om, at den fonologiske kvalitet af børnestavning, er en unik prædiktor af senere læsning. Samtidig er resultatet for tidlig læsning ikke i overensstemmelse med hypotesen, når både tidlig læsning og børnestavning er i modellen, da tidlig læsning i det tilfælde ikke er en unik prædiktor af senere læsning.

Resultatet i den multiple regressionsanalyse med alle variable i modellen understøtter, at den fonologiske kvalitet af børnestavning er væsentligt i sig selv til at forklare forskelle i senere læsning, men også at den fonologiske kvalitet af tidlig læsning ikke bidrager signifikant til at forklare forskelle i læsning i 1. kl., når variationen fra børnestavning også er i modellen. Det indikerer, at det, som er særligt for den fonologiske kvalitet af børnestavning, bidrager unik til forudsigelsen af senere læsning. Derimod bidrager det, som er særligt for den fonologiske kvalitet af tidlig læsning, og som forklarer unik variation i læsning i 1. kl. (se Tabel 4.11), når børnestavning ikke er i modellen, ikke væsentligt, når børnestavning er i modellen.

Teoretisk er resultatet interessant, fordi det kan belyse, hvad den fonologiske kvalitet af børnestavning og tidlig læsning afspeljer. En mulig tolkning af resultatet er, at den variation, som målet af tidlig læsning indfanger, og som bidrager til at forklare en unik andel af variation af læsning i 1. kl., når stavemålet ikke er i modellen, er forskelle mellem børnene i deres evne til at integrere opmærksomhed på sproglyde og
bogstavkendskab. Det unike, som læsemålet indfanger, der er væsentligt i forudsigelsen af læsning i 1. kl., er ikke længere unikt, når stavemålet inddrages i modellen, hvilket ses ved, at tidlig læsning ikke længere er en signifikant prædiktor (Tabel 4.13). Dette kan tolkes som et udtryk for, at det, som er fælles for afstandsmålene af tidlig læsning og børnestavning, netop var det, der gjorde, at læsemålet bidrog signifikant til at forklare forskelle i læsning i 1. kl., da afstandsmålet af børnestavning ikke var i modellen (Tabel 4.11). I afsnit 4.4.6.1 argumenterede jeg for, at det unikke bidrag fra det fonologiske afstandsmål af børnestavning ligeledes er denne integration. I denne tolkning måler både børnestavning og tidlig læsning børnenes færdighed i at integrere opmærksomhed på sproglyde og bogstavkendskab. Det ene gør det i læsning, det andet i stavning.

Hvis målene i høj grad måler det samme, hvorfor er børnestavning så en signifikant prædiktor af senere læsning, mens tidlig læsning ikke er (Tabel 4.13)? Jf. forskelle i målens fordelinger (Figur 4.3a og Figur 4.3), deres gennemsnit og standardafvigelse (Tabel 4.6) samt styrken af sammenhængen mellem de to fonologiske afstandsmål og læsning i 1. kl. (Tabel 4.7) er det tydeligt, at målet af børnestavning har mere variation mellem børn i den nedre ende af skalaen, mens flere børn har samme score i den nedre af skalaen ved det fonologiske afstandsmål af tidlig læsning. Målet af tidlig læsning ser i højere grad ud til at være påvirket af gulveffekt end målet af børnestavning. Yderligere er forbindelsen til senere læsefærdighed numerisk stærkere for målet af børnestavning (r =.69) end målet af tidlig læsning (r =.60). I det perspektiv er målet af børnestavning ganske enkelt bedre til at indfange variation i børnenes evne til at integrere opmærksomhed på sproglyde og bogstavkendskab end målet af tidlig læsning.

Resultatet af regressionen med både opmærksomhed på sproglyde, bogstavkendskab, tidlig læsning og stavning (Tabel 4.13) kan med dette i mente tolkes sådan, at det væsentligste for fonologiske mål af tidlig læsning og børnestavning og deres evne til at forklare unik variation i senere læsning er graden af gulveffekt i de fonologiske mål.

En anden mulig tolkning er, at den fonologiske kvalitet i børnestavning og tidlig læsning ikke skal anses som forskellige mål af samme underliggende færdighed, fordi integrationen af opmærksomhed på sproglyde og bogstavkendskab er særlig central for senere læsning i børnestavning og mindre i tidlig læsning. I denne tolkning er børnestavning som færdighed særlig væsentlig for udviklingen af senere læsning, og det er derfor, at dette mål er en unik prædiktor af senere læsefærdighed, mens tidlig læsning ikke er. Denne tolkning ville være i overensstemmelse med Sénéchals (2017) hypotese om, at tidlig fonologisk stavning er motoren i udviklingen af begyndende læsefærdighed (Sénéchal, 2017).

Fordi målet af tidlig læsning er påvirket af gulveffekt og målet af børnestavning ikke er, er begge forklaringsmodeller mulige. Evidensen fra dette studie kan således enten betyde, at børnestavning, scoret med en fonologisk score, på dette meget tidlige tidspunkt i udviklingen af stave- og læsefærdighed måler noget, som er mere væsentlig for senere læsefærdighed end den fonologiske kvalitet i tidlig læsning. Men på grund af gulveffekten i målet af tidlig læsning, og fordi begge mål er fælles for børnenes evne til at integrere deres fonologiske viden og bogstavkendskab, kan resultatet lige så godt tolkes som udtryk for at målene måler samme færdighed, som stavemålet indfanger bedre.

Flere studier har undersøgt, om børnestavning og tidlig læsning er samtidige unikke prædiktorer af senere læsefærdighed (se Tabel 4.2 og Tabel 4.5).

I de studier, der undersøger om tidlig læsning forklarer unik variation i senere læsning ud over børnestavning (se Tabel 4.2), er tendensen, at tidlig læsning forklarer unik variation i senere læsning ud over børnestavning, når målet af tidlig læsning er ortografisk. Og ikke er for massivt påvirket af gulveffekt (Lazo m.fl., 1997). I de studier, der undersøger om børnestavning forklarer unik variation i senere læsning...
ud over tidlig læsning (se Tabel 4.5), er tendensen, at den fonologiske kvalitet af børnestavning forklarer unik variation i senere læsning ud over tidlig læsning, men ikke blandt meget unge børn, hvor målet af børnestavning er for massivt påvirket af gulveffekt (Lazo m.fl., 1997), eller hvis der er to samtidige mål af børnestavning i modellen (Caravolas m.fl., 2001).

På den baggrund er der ikke i tidligere studier støtte til den tanke, at børnestavning indtager en særlig rolle som prædiktor af senere læsning. Tidligere studier indikerer således, at forklaringen på, at det kun er tidlig læsning, skal findes andre steder. En forklaring, som jeg også har beskrevet, er, at den fonologiske kvalitet af børnestavning og tidlig læsning i høj grad begge indfanger variation i børnenes evne til at integrere opmærksomhed på sproglyde og bogstavkendskab.

I samtlige studier i Tabel 4.2 er målet af tidlig læsning ortografisk, og i de studier, der måler tidlig læsning og børnestavning i børnehaveklassen, er målet af børnestavning fonologisk (undtagen Treiman m.fl., i manus). Fordi disse studier finder, at tidlig læsning er en unik prædiktor og indeværende studie ikke gør, sandsynliggør det, at fonologiske mål af tidlig læsning i indeværende studie indfanger den samme variation som målet af børnestavning. Dette er i overensstemmelse med den forkærling, at den fonologiske kvalitet af tidlig læsning og børnestavning er mål af samme færdighed, hvorfor det er målet, der indfanger mest variation (målet med mindst gulveffekt) der bidrager.

Dermed er tolkningen på tværs af studier ikke, at de fonologiske mål af børnestavning og tidlig læsning er forskellige metoder til at måle det samme med, men i stedet, at de måler samme færdighed i anvendelse i to forskellige opgaver, der begge er væsentlige for senere læsning.

Evidensen for, at fonologiske mål af tidlig læsning meget tidligt i udviklingen af læsning kan forklare unik variation i senere læsning ud over bidraget fra fonologiske mål af børnestavning, er begrænset til ét studie og bekræftes ikke i indeværende studie. Der er dog flere indikationer på, at dette ikke skyldes, at børnestavning er væsentligere for senere læsning end tidlig læsning, men nærmere, at dette kan tilskrives mere gulveffekt i læsemålet end i stavemålet i indeværende studie. Der er dog meget usikkert, om fonologiske mål af tidlig læsning og børnestavning faktisk blot er to måder at måle samme færdighed, eller om integrationen af opmærksomhed på sproglyde i både tidlig læsning og børnestavning er væsentlig for forudsigelsen af senere læsning. Dette har betydning for, om fonologiske mål af tidlig læsning overhovedet er relevante prædiktorer af senere læsning, eller om fonologiske mål af børnestavning, som i øvrigt er nemmere at score, blot kan bruges som prædiktorer af senere læsning, indtil ortografiske mål af læsning er så lidt påvirket af gulveffekt, at disse også kan bruges relevant som prædiktorer af senere læsning.
Det er muligt, at antallet af deltagere kan forklare forskellen i resultaterne for målet af **tidlig læsning**. De tre tidligere studier, der har samme prædiktorer som indeværende studie, har som minimum 107 deltagere og dermed flere end indeværende studie (n=92). Det kan således ikke afvises, at **tidlig læsning** ikke er en unik prædiktor i indeværende studie – alene af den årsag, at der er for få deltagere i studiet.

En anden mulig kilde til forskelle i resultater er, at målet af **tidlig læsning** indeværende studie er meget påvirket af gulveffekt. Da målet er udviklet til Studie 1, har fokus for itemsudvælgelsen været, at ordene i læsetesten skulle matche ordene i stavetesten (se afsnit 3.4.3.1.1). Derfor vil det være muligt at gøre læsetesten i indeværende studie nemmere og dermed skabe et mål af **tidlig læsning** med mindre gulveffekt og med en fordeling af scorer, der er mere sammenlignelig med scoren for **børnestavning**.

Derfor kunne det i fremtidige studier med flere deltagere være meningsfuldt at undersøge, om en lettere læseprøve, end den brugt i indeværende studie, kan indfange variation med mindre gulveffekt i den fonologiske kvalitet af **tidlig læsning** i børnehaveklas, og om denne variation kan forklare unik variation i senere læsning, ud over den variation et fonologisk mål af **børnestavning** forklarer. Dette ville skabe et sikrere evidensgrundlag for at beslutte, om målene er mål af samme færdighed eller mål af anvendelsen af samme færdighed i forskellige opgaver, som begge er væsentlige for senere læsning.

4.4.6.4 **Tidlig læsning og børnestavning som prædiktorer for senere stavning**

Tidlig læsning bidrager kun marginalt signifikant ud over bogstavkendskab, opmærksomhed på sproglyde og **børnestavning** til forudsigelsen af stavning i 1. kl. (se Tabel 4.12) med 1,5 % variation. **Børnestavning** forklarer fortsat unik variation i stavning i 1. kl., når **tidlig læsning** er i modellen. Dette resultat besvarer for sammenhængen mellem **børnestavning** og **tidlig læsning** i børnehaveklassen og stavning i 1. kl. det andet forskningsspørgsmål i Studie 2, idet resultatet ikke bekræftes hypotesen om, at den fonologiske kvalitet af **tidlig læsning**, er en unik prædiktor af senere stavning. Samtidig er resultatet for **børnestavning** stadig i overensstemmelse med hypotesen og en unik prædiktor af senere stavning.

Resultatet i den multiple regressionsanalyse med alle variable i modellen understøtter, at den fonologiske kvalitet af **børnestavning** er væsentligt i sig selv til at forklare forskelle i senere stavning, men at den fonologiske kvalitet af **tidlig læsning** ikke bidrager signifikant til at forklare forskelle i stavning i 1. kl., når variationen fra **børnestavning** også er i modellen. Det indikerer, at det, som er særligt for den fonologiske kvalitet af **børnestavning**, bidrager unik til forudsigelsen af senere stavning. Derimod bidrager det, som er særligt for den fonologiske kvalitet af **tidlig læsning**, ikke væsentligt til senere stavning, når **børnestavning** er i modellen.

Teoretisk er resultatet interessant, fordi det kan belyse, hvad den fonologiske kvalitet af **børnestavning** og **tidlig læsning** afspejler, og hvad der er væsentligt i forudsigelsen af senere stavning.

Som diskuteret for forudsigelsen af læsning (se afsnit 4.4.6.3) kan også resultatet for forudsigelsen af stavning både tolkes som et udtryk for, at **børnestavning** er en bedre prædiktor, fordi denne færdighed er væsentligere for udviklingen af senere stavning end **tidlig læsning**, eller som et udtryk for, at målene af den fonologiske kvalitet af **tidlig læsning** og **børnestavning** i høj grad måler det samme, hvorfor gulveffekten i målet af **tidlig læsning** er den centrale årsag til, at dette mål ikke bidrager unikt til senere stavning eller læsning.

Flere studier har undersøgt, om **børnestavning** og **tidlig læsning** er samtidige unikke prædiktorer af senere stavefærdighed (se Tabel 4.3 og Tabel 4.4).

I studierne, der undersøger om **tidlig læsning** forklarer unik variation ud over **børnestavning** i senere stavning (se Tabel 4.3), er tendensen, at **tidlig læsning** er en unik prædiktor, når både **tidlig læsning** og
senere stavning scores med et ortografisk mål og skal forklare variation ud over et fonologisk mål af børnestavning. Dette er dog kun tilfældet, hvis målet af tidlig læsning ikke i for høj grad er påvirket af gulveffekt. Når tidlig læsnings score er fonologisk, er den dog ikke en unik prædiktor af senere fonologisk stavning, når den skal forklare variation ud over et fonologisk mål af børnestavning.

I studierne, der undersøger om børnestavning forklarer unik variation ud over tidlig læsning i senere stavning (se Tabel 4.4), er tendensen, at børnestavning er en unik prædiktor, men ikke når gulveffekten er for massiv (Lazo m.fl., 1997), eller når to samtidige mål af børnestavning skal forklare variation ud over hinanden (Caravolas m.fl., 2001), så er det kun den ene, der er en unik prædiktor. Alle mål af børnestavning er i disse studier fonologiske, på nær ved sidste måletidspunkt i Caravolas m.fl. (2001), hvor der også er et ortografisk mål af børnestavning. I alle studierne forklarer målet af børnestavning variation ud over et ortografisk mål af tidlig læsning.

På den baggrund er der ikke i tidligere studier støtte til den tanke, at børnestavning indtager en særlig rolle som prædiktor af senere stavning. Tidligere studier indikerer således, at forklaringen på, at det kun er børnestavning, der en en unik prædiktor af senere stavning og ikke tidlig læsning, skal findes andre steder.

Den anden mulig forklaring på resultatet i indeværende studie var at den fonologiske kvalitet af tidlig læsning og børnestavning i høj grad er mål af samme færdighed. Denne forklaring understøttes af sammenlignelige resultater i indeværende og to tidligere studier, der ligesom indeværende studie, både har et fonologisk mål af børnestavning og tidlig læsning (Caravolas m.fl., 2001, Lazo m.fl., 1997). I indeværende studie er det fonologiske mål af tidlig læsning påvirket af gulveffekt, mens det fonologiske mål af børnestavning ikke er. Denne tendens til mere gulveffekt i det fonologiske læsemål end i det fonologiske stavemål er også til stede i de to tidligere studier, der bruger fonologiske mål af tidlig læsning og stavning som prædiktorer af senere stavning (Caravolas m.fl., 2001, Lazo m.fl., 1997). Denne kombination af gulveffekt og scoringsmetoder er i overensstemmelse med, at tidlig læsning ikke forklarer variation i senere stavning ud over børnestavning, fordi målene begge er følsomme for forskelle i børnenes evne til at integrere viden om bogstavkendskab og opmærksomhed på sproglyde, men målet af børnestavning, der er mindst påvirket af gulveffekt, gør dette bedst.

Tolkningen understøttes endvidere af, at de studier, der har et ortografisk mål af tidlig læsning, der ikke i for høj grad er påvirket af gulveffekt til at kunne forklare senere stavning ud over et fonologisk mål af børnestavning, faktisk finder, at tidlig læsning bidrager unikt til forudsigelsen af senere stavning.

Når målet af børnestavning og tidlig læsning ligner hinanden mindre, så er det, som er unikt for målet af tidlig læsning, i højere grad knyttet til senere stavning.

Det meget stabile unikke bidrag fra børnestavning til senere stavning understøtter, at det fonologiske mål af børnestavning er væsentlig for udviklingen af stavefærdighed. Dette peger på, at den integration af opmærksomhed på sproglyde, der er nødvendig for at kunne lave fonologisk acceptabel staveforsøg, er relevant for forudsigelsen af senere stavefærdighed, og at bidraget rækker ud over samtidig læsning, uanset om dennes score er fonologisk eller ortografisk.

På tværs af tidligere studier og indeværende studie er der således ikke evidens for, at fonologiske mål af tidlig læsning er væsentlige i forudsigelsen af senere stavning. Det kan dog ikke afvises, at målene, hvis de havde mindre gulveffekt, ville bidrage unikt. Resultatet i indeværende studie understreger, at integrationen af bogstavkendskab og opmærksomhed på sproglyde i stavning er væsentlig for udviklingen af senere korrekt stavning.
Det ville være interesserant at afprøve, om tidlig læsning, målt med et fonologisk mål uden gulveffekt, ville kunne forklare unik variation i senere stavning, ud over den fonologiske børnestavning forklarer. Hvis dette er tilfældet, vil det understøtte ideen om, at integrationen af opmærksomhed på sproglyde og bogstavkendskab både i læsning og stavning er væsentlig for senere stavning. Dette er der endnu ikke fundet evidens for hverken i indeværende eller tidligere studier.
5 Samlet diskussion

Denne afhandlings omdrejningspunkt har været to studier, som på hver deres måde har belyst ubesvarede eller ikke entydigt besvarede spørgsmål om børnestavnings rolle i den tidlige skriftsproglige udvikling.

5.1 Studie 1

Studie 1 belyste effekten af undervisning med børnestavning med direkte lærerstøtte på tidlige skriftsproglige færdigheder og sammenlignede denne med effekten af undervisning med indirekte lærerstøtte og IT-støtte. Effekten af undervisningen i de eksperimentelle grupper blev sammenlignet med effekten af almindelig børnehaveklasseundervisning.

Børnene blev testet før og efter undervisningen i stavning, læsning, opmærksomhed på sproglyde, bogstavkendskab og ordførsag og efter undervisningen også på længden af børnenes fri skrivning. Der var ingen signifikante forskelle mellem deltagergrupperne ved førtest.

Fremgangen i de enkelte grupper fra før- til eftertest for stavning, læsning, opmærksomhed på sproglyde og bogstavkendskab viste generelt for de eksperimentelle grupper signifikante fremgang fra før- til eftertest for stavning, læsning, opmærksomhed på sproglyde og bogstavkendskab. Eneste undtagelse var direkte og indirekte lærerstøtte ved målet af børnenes evne til at genkende forlyd (”Konsonanter”). I kontrolgruppern var der alene signifikant fremgang fra før- til eftertest i børnenes evne til at danne syntese (“Forlyd-rim”) og på den ortografiske afstandsscore for stavning.

Dernæst blev forskelle i justerede gennemsnit ved efter test mellem de eksperimentelle grupper og kontrolgrupper, direkte og indirekte støtte samt direkte støtte og IT-støtte vurderet for stavning, læsning, opmærksomhed på sproglyde og bogstavkendskab. Forskellen imellem grupper i andelen af børn, som forbedrer deres stave- og læsescore fra før- til eftertest, blev også vurderet. Sidst blev langtidseffekten af undervisningen på læsning og stavning i slutningen af 1. kl. undersøgt.

5.1.1 Stavning

For børnenes stavning af utrænede ord var der både med den fonologiske og den ortografiske score en signifikant hovedeffekt af deltagergruppe. Børnene i kontrolgrupper scorede signifikant højere end børnene i direkte lærerstøtte ved den fonologiske (d =0,78) og ved den ortografiske (d =0,74) score. Forskellen mellem IT-støtte og kontrolgrupper var signifikant ved den fonologiske score (d =0,53), men ikke ved den ortografiske score (d =0,44). Uanset scoringsmetode var forskellen mellem direkte støtte og kontrolgrupper ikke signifikant (d =0,43, fonologisk; d =0,34, ortografisk), eller forskellen mellem direkte og indirekte støtte (d=0,32, fonologisk; d=0,37, ortografisk) eller forskellen mellem direkte støtte og IT-støtte (d=0,21, fonologisk; d=0,28, ortografisk).

Hypotesen for direkte lærerstøtte var, at børnene i denne gruppe ville adskille sig fra kontrolgrupperne. Denne forventning blev for første gang i en dansk kontekst bekræftet i indeværende studie og passer med tidligere studier, som i andre sprog finder effekt af denne type træning. Effekten var til stede for utrænede ord, uanset scoringsmetode. Dette understøtter den tolkning, at børnene gennem børnestavning med direkte støtte tilegner sig generel færdighed i at stave fonologisk acceptabelt, som de kan bruge ved stavning af nye ord. Flere forskere har peget på, at denne færdighed kan være børnenes evne til at integrere opmærksomhed på sproglyd og bogstavkendskab i stavning og deraf udvikling af børnenes viden om det alfabetiske princip (fx Sénéchal, 2017). Effekten var også til stede i det ortografiske mål. Dette

7 Marginalt signifikant
indikerer, at børnene også tilegner sig viden, som er væsentlig for at stave ord korrekt, som ikke følger det basale niveau i det alfabetiske princip.

Hypotesen var, at direkte ville være mere effektiv end indirekte lærerstøtte. Der var ikke som forventet signifikant forskel mellem disse grupper. Tidligere studier har fundet en fordel til direkte over indirekte støtte. I hvert fald tre ting kan have haft betydning for den ikke-signifikante forskel i indeværende studie.

1. Der var kun 20 deltagere i hver gruppe.

2. I sammenligning med andre studier var ordene i indeværende studie generelt nemme for børnene at segmentere.

3. I indeværende studie fik børnene i indirekte støtte mere støtte end i flere tidligere studier, som har vist signifikante forskelle mellem direkte og indirekte støtte.

Dette kan have gjort det nemmere for børnene i indeværende studie at lære noget med indirekte støtte end i studier med ord, som er mere komplekse at segmentere, eller hvor den indirekte støtte var mere begrænset.

Disse tre forhold bidrager til at forklare, at tendensen til en fordel til direkte støtte over indirekte støtte ikke er signifikant i indeværende studie.

I en dansk kontekst tilbyder indeværende studie kun tendenser i data, der understøtter, at direkte støtte er mere effektivt end indirekte støtte, men fremtidige studier med flere deltagere i grupperne kan bekræfte, om denne tendens er signifikant. Endvidere er et væsentligt praksisperspektiv også, om direkte støtte er væsentligere for børn med lave forudsætninger end for andre børn – et spørgsmål, som indeværende studie ikke har belyst.

Hypotesen for IT-støtte var, at denne støtte ville være sammenligneligt effektivt med direkte støtte. Denne hypotese fandt støtte i analyserne for utrænede ord med den fonologiske score, hvor begge grupper adskilte sig signifikant og med moderat effektstørrelse fra kontrolgruppen. Forskellen mellem grupperne var lille og med en effektstørrelse, der nærmende sig grænsen for en ubetydelig forskel (d =0,21) For den ortografiske score var det kun gruppen med direkte støtte, der adskilte sig fra kontrolgruppen. Forskellen mellem IT-støtte og direkte støtte var dog fortsat lille.
For den fonologiske score er der således støtte til hypotesen om de to støttemetoders sammenlignelighed, men kun delvist for den ortografiske score. Det muligt, at forskellen mellem IT-støtte og kontrolgruppen med sin næsten moderate effektstørrelse også for den ortografiske score ville være signifikant i et studie med flere deltagere. Resultaterne for den fonologiske score ville vurderet ved effektstørrelserne højst sandsynligt ikke ændre sig i et studie med større deltagergropper.

For første gang vises effekt af børnestavning med IT-støtte. Denne vises på utrænede ord med et fonologisk mål, hvilket indikerer, at børnene har lærøg noget, som de kan anvende ved stavning af nye ord. Dette resultat er fundet under en række betingelser, som resultatet ikke kan generaliseres ud over. Centrale betingelser er, at børnene børnestaver ord, som overvejende er meget enkle at segmentere, ord af stigende svarhedsgrad i fast progression, talesyntesen oplæser med simple fonem-grafem-forbindelser, langsamt oplæsningstempo, løbende syntese, mens børnene skriver, og læreren hjælper barnet hen til den korrekte stavning, hvis det ikke selv kan komme i mål med talesyntesen, børnene følger lærerens oplæsning af det korrekt stavede ord. Fremtidige studier, som vil replicere fundene for IT-støtte i indeværende studie, kan med fordel gave dette i et studie med flere deltagere. Dette ville gøre konklusionerne vedrørende de små og moderate forskelle mere entydige. Et væsentligt spørgsmål, som indeværende studie ikke har besvaret, er, om IT-støtten er særlig god for nogle elever, men ikke for andre.

Indeværende studies resultatet for stavning af utrænede ord kan anses som indledende evidens for, at IT-støttet børnestavning har potentielle som en effektiv undervisningsmetode. IT-støttes potentielle i en klassesammenhæng skal fortsat efterprøves, og fremtidige studier kan fokusere på, om IT-støtten kan designes og implementeres på en måde, så lærerens arbejde lettes. Fremtidige studier kunne på den måde tage udgangspunkt i indeværende studies positive fund om IT-støtte og undersøge, om disse kan forbedres med fx adaptiv tilpasning af træningsordenes svarhedsgrad og udvikling af computerstøtte, der hjælper børnene, hvis de ikke med syntesens hjælp kommer frem til den rette stavemåde.

forbindelser. Dette er et væsentligt perspektiv, som fremtidige studier af børnestavning kan replicere i et design, hvor ordene i stavetesten er sammensat med henblik på at belyse effekter på simple overfor komplexe forbindelser.

5.1.2 Læsning

Sammenligning af justerede gennemsnit for læsning ved eftertest viste, at den generelle fremgang i de eksperimentelle grupper, som havde en stor til moderat stor effektstørrelse, kun for indirekte lærerstøtte gav anledning til en signifikant forskel til kontrolgruppen. Alle effektstørrelser for forskellen mellem kontrolgruppen og de eksperimentelle grupper var moderate (d =0,51-0,66). Det indikerede, at den ikke-signifikante forskel mellem kontrolgruppen og direkte støtte henholdsvis IT-støtte kunne forklares som tilfældige eller med den lille gruppestørrelse i indeværende studie. Et opfølgende studie vil med flere deltagere kunne efterprøve antagelsen om, at alle eksperimentelle grupper udvikler deres læsning i sammenligning med kontrolgruppen. Den meget lille effektstørrelse for forskellen mellem direkte lærerstøtte og de to andre eksperimentelle grupper understøtter også den tolkning, at den væsentlige forskel mellem grupper i indeværende studie er den mellem kontrolgruppen og de eksperimentelle grupper, ikke forskellen de eksperimentelle grupper imellem.

Resultatet for læsning tyder på, at det, der er fælles for undervisningen i de tre eksperimentelle grupper, er væsentligt for forskellen mellem kontrolgruppen og de tre eksperimentelle grupper (kun er signifikant for indirekte lærerstøtte). Det, der går igen på tværs af de eksperimentelle grupper, er, at børnene i små grupper børnestaver ord, som overvejende er meget enkle at segmentere, at ordene staves fire gange, at ord er af stigende sværhedsgrad, at børnene ser den korrekte stavning, og at børnene følger lærerens oplæsning af den korrekte stavemåde. Det er disse betingelser, der samlet adskiller kontrolgruppen og de eksperimentelle grupper. Tendensen i indeværende studie understøtter, at effekten på læsning må forstås...
som en effekt af summen af betingelserne. Fremtidige studier kan i et design med flere deltagere komme tættere på, om det faktisk er børnestavning i sig selv, der giver anledning til fremgangen i læsning, eller om det er andre delelementer i interventionen, der skaber denne effekt.

For læsning viste sammenligning mellem deltagergrupperne i andelen af elever med fremgang ingen signifikante forskelle. Tendensen var, som ved sammenligning af justerede gennemsnit, at den store forskel var mellem kontrolgruppen og de tre eksperimentelle grupper. Kontrolgruppen havde ni børn med fremgang, mens de eksperimentelle grupper havde mellem 14 og 15 børn.

For hverken læsning eller stavning var der langtidseffekter af undervisningen. Dette tolker jeg som et udtryk for, at det, børnene lærer af undervisning med børnestavning, er det samme som det, de lærer i klassen. Det understøtter, at undervisning med børnestavning skal ses som endnu en evidensbaseret undervisningsmetode, der kan supplere den øvrige undervisning med fokus på udvikling af tidlige skriftsproglige færdigheder.

5.1.3 Opmærksomhed på sproglyde, bogstavkendskab

For opmærksomhed på sproglyde undersøgte jeg både børnenes evne til at danne syntese (”Forlyd-rim”) og deres evne til at genkende forlyd (”Konsonanter”). Der var ingen signifikante forskelle mellem deltagergrupper. Det samme var tilfældet for børnenes bogstavkendskab.

5.1.3.1 Opmærksomhed på sproglyde

For opmærksomhed på sproglyd blev hypotesen om, at børnene i de eksperimentelle grupper ikke ville adskille sig fra kontrolgruppen, understøttet. Mindst to karakteristika, loftseffekt og deltagertal, ved studiet kan dog have skævredet resultatet, hvorfor det her diskuteres, hvordan disse karakteristika kan have påvirket resultatet.

For børnenes evne til at danne syntese (”Forlyd-rim”) var der tendens til loftseffekt. Vurderet ved effektstørrelser var forskellene mellem de fire deltagergrupper små (d ≤0,25). Tendensen til loftseffekt og effektstørrelserne for forskellene mellem grupper er for dette mål så små, at jeg vil forvente samme resultat i et studie med flere deltagere og ingen tendens til loftseffekt i målet.

For børnenes evne til at genkende forlyd (”Konsonanter”) var børnenes gennemsnit numerisk højest i IT-støtte, og det er muligt, at forskellen mellem denne gruppe og de resterende grupper undervurderes på grund af mere loftseffekt i IT-støtte. Vurderet ved effektstørrelser var det forskellen mellem IT-støtte og de resterende grupper, der var størst. Af interesse i dette studie var forskellen mellem IT-støtte og kontrolgruppen (d =0,40) samt direkte lærerstøtte (d =0,44). Disse effektstørrelser tyder på, at forskellen er af en størrelse, som et studie med flere deltagere formentlig ville finde var signifikant. Af interesse for hypotesen var også forskellen mellem kontrolgruppen henholdsvis direkte- og indirekte lærerstøtte samt mellem de to former for lærerstøtte. Effektstørrelsen for disse forskelle var meget små (d <0,05) og af en sådan størrelse, at de selv i et studie med flere deltagere ville være ikke-signifikante.

Tendensen i data for genkendelse af forlyd passer med forventningen til direkte og indirekte støtte. For børnene, som har børnestavet med IT-støtte, er der en tendens til, at de adskiller sig fra de andre deltagergrupper. Forskellen er dog ikke med indværende studies gruppestørrelse signifikant, hvorfor den må bekræftes i fremtidige studier med større gruppestørrelser. Data i indværende studie tyder på, men kan ikke bekræfte, at børnestavning med IT-støtte, udvikler børnenes evne til at genkende sproglyde i forlyd positivt.
Indeværende studie bidrager med evidens fra tidligere studier for, at undervisning med børnestavning i sammenligning med anden god undervisning i opmærksomhed på sproglyd ikke har en fordel i forhold til at udvikle børnenes opmærksomhed på sproglyde. Som i Ouellette m.fl. (2013) og Sénéchal m.fl. (2012) finder dette studie, at børnestavning og læsning kan udvikle sig positivt, uden af dette kan forklares af forskelle i fremgang i opmærksomhed på sproglyd. Dette indikerer, at børnestavning og tidlig læsning er mere end opmærksomhed på sproglyde.

5.1.3.2 Bogstavkendskab
For bogstavkendskab var forventningen, at effekten kunne ses i de samme grupper som effekten på stavning. Hypotesen blev ikke understøttet signifikant, men tendensen i data var i overensstemmelse med hypotesen.

Målet af bogstavkendskab var på tværs af deltagergroper påvirket af loftseffekt, hvilket betød, at forskelle mellem grupper kunne blive underverderet, særlig for direkte støtte og IT-støtte, der havde det numerisk højeste gennemsnit. Det er muligt, at forskellen mellem disse grupper og indirekte støtte samt kontrolgruppen undervurderes på grund af loftseffekten. Vurderet ved effektstørrelser var forskellen fra direkte støtte henholdsvis IT-støtte til kontrolgruppen små (d =0,42 og 0,37), men af en størrelse, som et studie med flere deltagere formentlig ville vide sig signifikante. Effektstørrelsen for forskellen mellem indirekte støtte og kontrolgruppen var så små (d =0,21), at de sandsynligvis ikke ville være signifikante selv i et studie med flere deltagere. Tendensen i data passer således med hypotesen. Forskellen er dog ikke med indeværende studies gruppestørrelse signifikant, hvorfor den må bekræftes i fremtidig studier med større gruppemønstre.

5.1.4 Fri skrivning
En bekymring i forhold til den undervisning, der er blevet gennemført i indeværende studie, kunne være eventuelle negative sideeffekter på børnenes skrivelse af den direkte støtte eller IT-støtten, som retter børnenes opmærksomhed på, at deres stavemåder kan blive bedre. Jeg fandt dog ikke, at grupperne, som havde skrevet med disse former for støtte, skrev signifikant kortere end de andre grupper.

5.1.5 Generaliserbarhed

Endvidere gjorde en række designtiltag det usandsynligt, at forskellene mellem grupper ved eftertest kunne afskrives som resultat af fx lærer- eller klasseseffekter. Signifikante forskelle i indeværende studie kan således i høj grad forventes at afspjæle virkelige forskelle. Studiets svaghed er den lille gruppestørrelse, som gør, at forskelle med effektstørrelser mellem 0,3 og 0,5 ikke er signifikante til trods for, at de sandsynligvis ville være det i et studie med flere grupper. Derfor må indeværende studie for disse ikke-signifikante, men ikke ubetydelige effektstørrelser, bidrage med at påvise tendenser, som senere studier kan bygge videre på og bekræfte i et design med flere deltagere.

De betingelser, resultaterne er fundet under, er væsentlige at holde sig for øje, da effekten ikke blot kan overføres til andre betingelser. Væsentlige betingelser i indeværende studie er den støtte, børnene børnestaver med, de ord, børnene staver, organiseringen i små grupper, varigheden og underviserens kompetencer. Samtidig er indholdet i den undervisning, der foregår i børnehaveklassen og som alle børnene i studiet deltager i også en væsentlig betingelse. Hvis disse faktorer ændres, er det væsentligt at understrege, at resultaterne fra dette studie ikke kan generaliseres til de nye betingelser.

Studiet er endnu et skridt på vejen mod at skabe evidens for, hvordan børnestavning kan inddrages i undervisningen og danne udgangspunkt for at udvikle kvaliteten af børnenes tidlige skriftsproglige færdigheder.

5.2 Studie 2
I forlængelse af disse resultater undersøgte Studie 2, om børnestavning og tidlig læsning er væsentlige for forudsigelsen af senere stavning og læsning.

5.2.1 Fordel til fonologiske eller ortografiske scoringsmetoder?
Det første spørgsmål var, om et fonologisk afstandsmål eller et ortografisk binært mål var stærkest knyttet til stavning og læsning i 1. kl. To parvise sammenligninger blev gennemført. I den første sammenligning blev styrken af sammenhængen mellem børnestavning i børnehaveklassen scoret med en fonologisk afstandsscore henholdsvis en binær ortografisk score og stavning i slutningen af 1. kl. sammenlignet. I den anden sammenligning blev samme scoringsmetoder for tidlig læsning i børnehaveklassen sammenlignet med læsning i 1. kl. Resultatet af de parvise sammenligninger viser, at en ortografisk binær score for tidlig stavning og læsning, hvor mange børn scorer nul, har svagere forbindelse til senere læsning og stavning end en fonologiske afstandsscore, hvor meget få børn scorer nul. Umiddelbart ligner dette en fordel til fonologiske mål over ortografiske mål. For tolkningen af dette resultat er der dog en indlagt snubletråd, som knytter sig til, at fordelingen af score og scoringsmetoder ikke kan adskilles. Der er mere gulveffekt i den binære ortografiske score end i den fonologiske afstandsscore. For tolkningen af dette resultat er der dog en indlagt snubletråd, som knytter sig til, at fordelingen af score og scoringsmetoder ikke kan adskilles. Der er mere gulveffekt i den binære ortografiske score end i den fonologiske afstandsscore. Det betyder, at fordelen til den fonologiske afstandsscore for hverken børnestavning eller tidlig læsning entydigt kan tolkes som en fordel til fonologiske over ortografiske scoringsmetoder. Det kan ganske enkelt ikke afvises, at fordelen skyldes mere variation i den fonologiske afstandsscore i sammenligning med den binære ortografiske og ikke forskelle i typen af variation, de fonologiske baserede versus ortografisk baserede scoringsmetoder indfanger.

Fordelen til den fonologiske afstandsscore kan tolkes som støtte til, at forskelle mellem børnene i den fonologiske kvalitet i tidlig læsning og børnestavning tidligt i udviklingen af både stavning og læsning er meget tæt knyttet til senere stave- og læsefærdighed, og at disse forskelle, for danske børn i midten af børnehaveklassen, indfanges bedre af et fonologisk afstandsmål end et binært ortografisk mål. Fordelen til de fonologiske over de ortografiske mål er derimod ikke evidens for, at forskelle mellem børnene knyttet
til videns om andre mønstre i ortografien end mønstrene mellem sproglyd og bogstav er uvæsentlige for forudsigelsen af senere stave- og læsefærdighed. Dette svar sløres af gulveffekten i det ortografiske mål i indeværende studie.

Flere tidligere studier (Treiman m.fl., 2016; 2018) finder en fordel til det binære ortografiske mål som prædiktor af senere stavning. Disse studier finder dog også, at blandt de svageste stavere er den fonologiske score lige så god eller numerisk stærkere knyttet til senere stavning. En mulig forklaring på fordelen til det fonologiske afstandsmål er, at det ortografiske mål på grund af gulveffekten ikke kan skelne mellem børnene i relation til deres viden om andre mønstre i ortografien. Dette er der evidens for, når det binære ortografiske mål, som i indeværende studie, og blandt de svageste stavere, i tidligere studier, er stærkt påvirket af gulveffekt.

Fremtidige studier kan forsøge at skelne mellem scoringsmetoder og gulveffekt, ved at introducere ortografiske afstandsmål. Disse er for stNavn blevet undersøgt af Treiman og kolleger (fx 2016), og har mindre tendens til gulveffekt end det binære ortografiske mål. Den ortografiske afstandsscore for stavning kunne, ligesom den fonologiske er blevet det i indeværende studie, omdannes til en ortografisk afstandsscore af tidlig læsning. Denne scoringsmetode ville både for børnestavning og tidlig læsning give mulighed for direkte sammenligning af scoringsmetoder uden, at gulveffekt forstyrer tolkningen af resultatet.

I en dansk kontekst er det første gang, at den computergenererede scoringsmetode Ponto (Kessler, 2009) er blevet brugt til at generere en fonologisk afstandsscore for børnestavning, og denne scores evne til at forklare variation i senere stavning er blevet påvist. Tidligere er det i en dansk kontekst for børn med høj opmærksomhed på sproglyde blevet vist, at kvaliteten af børnestavning scoret som udviklingsstadien er forbundet til variation i senere stavning og læsning (Frost, 2001). Dette studie gentager altså dette resultat med den computergenererede fonologiske afstandsscore, men viser i en dansk kontekst for første gang, at sammenhængen er stærk for en samlet gruppe af børnehaveklassebørn. Den computergenererede fonologiske afstandsscore for tidlig læsning er udviklet af denne forfatter på baggrund af den modsvarende score for stavning (fx Treiman m.fl., 2016). Det er dermed første gang, at sammenhængen mellem denne scoringsmetode og senere læsning er påvist.

5.2.2 Er den fonologiske kvalitet i børnestavning og tidlig læsning unik?
Dette leder til Studie 2’s andet forskningsspørgsmål, som spørger om børnehaveklassebørns læsning og stavning kan forklare senere læsning og stavning unikt. Dette spørgsmål er både interessant af teoretiske og praktiske årsager.

Resultaterne fra studier med dette forskningsspørgsmål kan belyse om børnestavning og tidlig læsning er mere end opmærksomhed på sproglyde og bogstavkendskab eller om færdighederne nærmere kan ses som summen af disse. Dette er der nemlig ikke entydig evidens for i tidligere studier. Endvidere kan de scoringsmetoder, som resultaterne opnås med, belyse om mål, der indfanger bestemt variation er væsentlig for, om børnestavning og tidlig læsning er unikke prædiktorer. I indeværende studie undersøges det unikke bidrag fra børnestavning og tidlig læsning med en fonologisk score.

I en dansk sammenhæng er der denne forfatter bekendt meget få studier, som belyser om børnestavning og tidlig læsning fra midten af børnehaveklassen kan forklare unik variation ud over opmærksomhed på sproglyde og bogstavkendskab. Frost (2001) undersøger det unikke bidrag fra børnestavning til senere læsning og stavning. I dette studie skal børnestavning alene forklare variation ud over opmærksomhed på sproglyde. Fordi ortografier ikke er ens (fx Seymour m.fl., 2003) og sammenhænge fundet i en ortografi ikke
blot kan overføres til andre, så er det relevant, at belyse disse sammenhænge yderligere i en dansk kontekst.

I et praksisperspektiv er spørgsmål om børnestavning og tidlig læsning unikke bidrag også relevant, da det kan være med til at udvide evidensgrundlaget for, hvilke færdigheder det er meningsfuldt at inkludere i testbatterier med henblik på at kunne forudsige senere stave- og læseudvikling.

Fire multiple hierarkiske regressionsanalyser blev lavet for at belyse børnestavning og tidlig læsning som unikke prædiktorer af senere stavning og læsning.

5.2.2.1 Unikke ud over omærksomhed på sproglyde og bogstavkendskab?

Den fonologiske kvalitet af børnestavning og tidlig læsning i midten af børnehaveklassen forklarede unik variation i henholdsvis stavning og læsning i 1. kl. Børnestavning forklarede 5 % unik variation i stavning i 1. kl. ud over omærksomhed på sproglyde og bogstavkendskab. Tidlig læsning forklarede ud over samme færdigheder 2 % unik variation i læsning i 1. kl. Disse resultater var som forventet.

Resultaterne af disse analyser understøtter for både børnestavning og tidlig læsning, at den variation, som de fonologiske mål indfanger, i sig selv er væsentlig for forudsigelsen af stavning og læsning i 1. kl. Dette er i tråd med Frost (2001), som peger på, at børnene skal tilegne sig et funktionelt bogstavkendskab for at kunne anvende bogstaverne i stavning og læsning. I det perspektiv er der brug for mere end omærksomhed på sproglyde og viden om bogstavernes navne. Det unikke bidrag fra fonologiske metoder er endvidere, tråd med Ehri (fx 2005), der fremhæver viden om det alfabetiske princip, som den centrale tidlige færdighed, børnene skal tilegne sig for at udvikle sikker læse- og stavefærdighed.

Resultatet for børnestavning er i tråd med resultaterne i tidligere studier, som med en fonologisk score uden gulveffekt finder, at børnestavning er en unik prædiktor af senere stavning. Disse studier danner sammen et rimeligt grundlag for at vurdere børnestavnings fonologiske kvalitet som væsentlig for senere stavning. På den baggrund er der grund til at tro, at det unikke bidrag fra børnestavning ikke blot er gældende for de danske børnehaveklassebørn i indeværende studie, men afspejler en mere generel sammenhæng.

Resultatet for tidlig læsning kan sammenlignes med to tidligere studier. Evidensen er ikke entydig, men på tværs af studier, og i overensstemmelse med indeværende studie, er tendensen at fonologiske mål af tidlig læsning kan forklare unik variation i senere læsning, hvis de ikke i for høj grad er påvirket af gulveffekt. Dette er begyndende evidens for, at det unikke bidrag fra tidlig læsning til senere læsning gælder for mere end de danske børnehaveklassebørn. Dog er evidensen begrænset og flere studier, der bekræfter denne sammenhæng, ville understøtte, at disse resultater ikke blot er tilfældige. Det kunne endvidere gavne tolkningen af bidraget fra tidlig til senere læsning, at det tidlige læsemål har mindre gulveffekt, end det er tilfældet i indeværende studie. Det er sandsynligt, at dette kan opnås med enkelte lidt lettere items i læsetesten.

5.2.2.2 Unikke ud over hinanden?

Børnestavning forklarede 5 % unik variation i læsning i 1. kl ud over omærksomhed på sproglyde, bogstavkendskab og tidlig læsning. Endvidere var tidlig læsning ikke en unik prædiktor af læsning i 1. kl, når børnestavning var en del af den model, der forklarede variation i læsning i 1. kl. I modsætning hertil forklarede tidlig læsning ikke unik variation i senere stavning ud over omærksomhed på sproglyde, bogstavkendskab og børnestavning. Børnestavning forklarede dog forsat unik variation i stavning i 1. kl, når også tidlig læsning var i modellen. Kun for børnestavning var dette resultat som forventet.
Resultatet kan tolkes som et udtryk for at **børnestavning** er væsentligere for senere læsning og stavning end den fonologiske kvalitet af **tidlig læsning**. En tolkning der et i tråd med Sénéchal (2017), der argumenterer for den centrale rolle af **børnestavning** i udviklingen af sikker læsning og deraf stavning. Gulveffekt i målet af **tidlig læsning** vanskeliggør dog tolkningen. Denne gør, at det ikke er muligt at skelne effekten af, at målet af **børnestavning** har mere variation end målet af **tidlig læsning**, fra effekten af, at de to mål indfanger forskellig variation. Det kan på den baggrund ikke afvises, at årsagen til, at kun **børnestavning**, og ikke målet af **tidlig læsning**, er en unik prædiktor, er gulveffekten i dette mål.

Evidensen fra tidligere studier understøtter ikke den tolkning, at **børnestavning** indtager en særlig rolle, men peger på, at det er gulveffekten i målet af **tidlig læsning**, der er forklaringen på, at det kun er **børnestavning**, der er en unik prædiktor af senere **læsning og stavning**. En tolkning af resultatet af indeværende studie, som er i overensstemmelse med gulveffektens centrale betydning, er, at mål af den fonologiske kvalitet i **børnestavning** og **tidlig læsning** begge afspejler børnenes evne til at integrere bogstavkendskab og opmærksomhed på sproglyde i stavning. I denne tolkning indfanger de to mål den samme, eller næsten den samme variation. Det tyder på, at gulveffekten er væsentligt for, hvilket mål der er en unik prædiktor. Denne tolkning af resultatet er i overensstemmelse med tendenserne i resultaterne på tværs af tidligere studier.

5.2.2.3 Ny viden om målenes unikhed

Indeværende studie bidrager i en dansk sammenhæng med evidens for, at fonologiske mål af **børnestavning** og **tidlig læsning** fra midten af børnehaveklassen kan forklare unik variation i samme færdighed et år senere. For **børnestavning** understøtter dette resultat tidligere fund i en dansk kontekst af Frost (2001). For **tidlig læsning** er evidensen ny i en dansk sammenhæng.

Endvidere er de computergenererede afstandsmål også nye for stavemålet i en dansk sammenhæng og for læsemålet internationalt. For stavemålet bidrager indeværende studie med viden om, at denne scoringsmetode på tværs af sprog er en gyldig måde af score børnestavning på. For læsemålet er dette studie første evidens for, at læsning scoret med et computergenereret score af fonologisk afstand på et tidspunkt i udviklingen, hvor mange børn er ikke-læsere, kan forklare unik variation i senere læsning.

For **børnestavning** er det unikke bidrag til både **senere læsning** og **stavning** 5 %, og da målet er nemt atindsamle og score, kan det være meningsfuldt at medtage det i screeningen af børnenes tidlige færdigheder med henblik på at forudsige **senere læse- og stavefærdighed**. For **tidlig læsning** er dette studie indledende evidens for, at målet forklarer unik variation i **senere læsning**, men da målet er påvirket af gulveffekt, er der fortsat ubesvarede spørgsmål om det unikke bidrag fra dette mål, når både børnestavning og tidlig læsning er prædiktorer. Fremtidige studier, som ønsker at undersøge forholdet mellem fonologiske mål af **tidlig læsning** og **børnestavning** og målenes rolle som samtidige prædiktorer af **senere læsning** og **stavning**, bør undersøge, om det er muligt at designe et læsemål, så det i endnu højere grad end i indeværende studie, kan skelne kvaliteten af børnenes fonologiske læsning i den nedre ende af skalaen.
6 Perspektiver

Fremtidig forskning om børnestavnings undervisningspotentiale vil kunne bygge på evidensen i Studie 1 og belyse effekten af IT-støttet børnestavning i andre grupper af børn og under andre betingelser. Denne viden er nødvendig, hvis resultaterne om udbyttet af børnestavning med IT-støtte skal kunne generaliseres. Af særlig interesse er effekten af undervisningen blandt børn med forskellige forudsætninger. Fremtidige studier kan også undersøge talesynteses mulighed for at understøtte børnene i at tilegne sig viden om komplekse fonem-grafem-forbindelser. I indeværende studie var det kun børnene som børnestavede med direkte støtte der lærte sig noget om denne type af forbindelser. Måske en syntese med andre designkarateristika støtte børnene i at tilegne sig viden om denne type forbindelser.

Fremtidige studier kan bygge på evidensen fra Studie 2 om den computergenererede score af den fonologiske kvalitet af tidlig læsning og udvikle tilsvarende mål for den ortografiske kvalitet. To afstandsmål, som ikke er påvirket af gulveffekt, ville både for børnestavning og tidlig læsning give mindre problemer med tolkningen af resultater ved sammenligning af forskellige scoringsmetoder.

I et praksisperspektiv er et væsentligt sigte med studier om sammenhænge over tid muligheden for at identificere børn i risiko for at udvikle vanskeligheder med læsning og stavning, så en tidlig indsats kan iværksættes. Tidlig indsats har nemlig vist sig at være særligt effektiv (se fx metaanalyse af Ehri m.fl., 2001; Suggate, 2010). Det har ligget uden for afhandlingens ramme at gennemføre denne type af analyser, men fordi de fonologiske mål har mindre gulveffekt end de klassiske binære ortografiske mål, er det muligt, at de har et væsentligt potentiale i forhold til identifikation af risikoelever. Det ville være oplagt for fremtidige studier at undersøge dette.

Earlbaum Ass.

udvikling af alvorlige afkodningsvanskeligheder (herunder ordblindhed).
https://laes.hum.ku.dk/centerets_forskning/tidligidentifikation/projektrapport/Projektrappo
t_Gellert_Elbro_Tidl__id_endelig_udgave.pdf

Ouellette, G., & Sénéchal, M. (2017). Invented spelling in kindergarten as a predictor of reading and spelling in Grade 1: A new pathway to literacy, or just the same road, less known? *Developmental Psychology*, 53, 1, 77-88. DOI: 10.1037/dev0000179

DOI: 10.1080/10888438.2016.1186168

UVM (2015). https://arkiv.emu.dk/omraade/gsk-1%C3%A6rer/ffm/b%C3%B8rnehaveklassen

8 Bilag

8.1 Grafem-fonem-forbindelser i talesyntesen

8.1.1 Konsonantgrafemer

Danske konsonantgrafemers navn, hyppigste udtale i forlyd, fonem med samme tegn som grafem, udtale af fonem i forlyd, udtalevariant af fonem.

<table>
<thead>
<tr>
<th>Grafem</th>
<th>Navn</th>
<th>Hyppigste udtale i forlyd</th>
<th>Fonem</th>
<th>Udtale i forlyd</th>
<th>Andre udtalevarianter</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>['be']</td>
<td>/b/</td>
<td>[b]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>['se']</td>
<td>/d/</td>
<td>[d]</td>
<td>[ð]</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>['de']</td>
<td>/d/</td>
<td>[d]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>['ef']</td>
<td>/f/</td>
<td>[f]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>['ge']</td>
<td>/g/</td>
<td>[g]</td>
<td>[j] [w]</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>['hɔ']</td>
<td>/h/</td>
<td>[h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>['jɔð']</td>
<td>/j/</td>
<td>[j]</td>
<td>[ɕ]</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>['kɔ']</td>
<td>/k/</td>
<td>[k]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>['el']</td>
<td>/l/</td>
<td>[l]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>['em']</td>
<td>/m/</td>
<td>[m]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>['en']</td>
<td>/n/</td>
<td>[n]</td>
<td>[ŋ]</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>['pe']</td>
<td>/p/</td>
<td>[p]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>['ku']</td>
<td>/k/</td>
<td>[k]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>['æg']</td>
<td>/r/</td>
<td>[r]</td>
<td>[g]</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>['es']</td>
<td>/s/</td>
<td>[s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>['te']</td>
<td>/t/</td>
<td>[t]</td>
<td>[d]</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>['ve']</td>
<td>/v/</td>
<td>[v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>['ve']</td>
<td>/v/</td>
<td>[v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>['egs']</td>
<td>/s/</td>
<td>[s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>['sed']</td>
<td>/s/</td>
<td>[s]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.1.2 Vokalgrafemer

Danske vokalgrafemers navn, hyppigste udtale i forlyd, andre udtaler, fonem med samme tegn som grafem, udtale af fonem i forlyd, udtalevariant før /r/.

<table>
<thead>
<tr>
<th>Grafem</th>
<th>Navn</th>
<th>Hyppigste udtale i forlyd kort/lang variant</th>
<th>Andre udtaler i forlyd</th>
<th>Fonem</th>
<th>Udtale i forlyd</th>
<th>Udtale med efterfølgende /r/</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>[ˈæˀ]</td>
<td>[a]</td>
<td>/a/</td>
<td>[a] [a]</td>
<td>[a]</td>
<td></td>
</tr>
<tr>
<td>æ</td>
<td>[æː]</td>
<td>[æː] [œː]</td>
<td>/œː/</td>
<td>[œː] [œː]</td>
<td>[œː]</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>[ˈɛˀ]</td>
<td>[ɛ]</td>
<td>/ɛ/</td>
<td>[ɛ]</td>
<td>[ɛ]</td>
<td></td>
</tr>
<tr>
<td>æ</td>
<td>[æː]</td>
<td>[æː] [œː]</td>
<td>/œː/</td>
<td>[œː] [œː]</td>
<td>[œː]</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>[ˈiˀ]</td>
<td>[i]</td>
<td>/i/</td>
<td>[i]</td>
<td>[i]</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>[ˈoˀ]</td>
<td>[ɔ]</td>
<td>/ɔ/</td>
<td>[ɔ] [œː]</td>
<td>[œː]</td>
<td></td>
</tr>
<tr>
<td>æ</td>
<td>[æː]</td>
<td>[æː] [œː]</td>
<td>/œː/</td>
<td>[œː] [œː]</td>
<td>[œː]</td>
<td></td>
</tr>
<tr>
<td>ø</td>
<td>[ˈøˀ]</td>
<td>[ø]</td>
<td>/ø/</td>
<td>[ø]</td>
<td>[ø]</td>
<td></td>
</tr>
<tr>
<td>å</td>
<td>[ˈɔˀ]</td>
<td>[ɔ]</td>
<td>/ɔ/</td>
<td>[ɔ] [œː]</td>
<td>[œː]</td>
<td></td>
</tr>
</tbody>
</table>

8.2 Bilag - ord i pilotstudiet

<table>
<thead>
<tr>
<th>Simpel1</th>
<th>Simpel2</th>
<th>Simpel3</th>
<th>Kompleks1</th>
<th>Kompleks2</th>
<th>Kompleks3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bas</td>
<td>Avis</td>
<td>Ananas</td>
<td>Bæk</td>
<td>Buket</td>
<td>Dynamit</td>
</tr>
<tr>
<td>Fe</td>
<td>Banan</td>
<td>Bikini</td>
<td>Dyk</td>
<td>Denim</td>
<td>Kapitel</td>
</tr>
<tr>
<td>Gås</td>
<td>Dato</td>
<td>Domino</td>
<td>Dyt</td>
<td>Butik</td>
<td>Motorik</td>
</tr>
<tr>
<td>Hæl</td>
<td>Feta</td>
<td>Feminin</td>
<td>Fem</td>
<td>Hotel</td>
<td>Nikotin</td>
</tr>
<tr>
<td>Lim</td>
<td>Juvel</td>
<td>Koloni</td>
<td>Hat</td>
<td>Minut</td>
<td>Politik</td>
</tr>
<tr>
<td>Mel</td>
<td>Kamel</td>
<td>Melodi</td>
<td>Hik</td>
<td>Musik</td>
<td>Volapyk</td>
</tr>
<tr>
<td>Nål</td>
<td>Lava</td>
<td>Megafon</td>
<td>Kup</td>
<td>Pilot</td>
<td></td>
</tr>
<tr>
<td>Vin</td>
<td>Magi</td>
<td>Minibil</td>
<td>Kys</td>
<td>Salat</td>
<td></td>
</tr>
<tr>
<td>Melon</td>
<td>Okapi</td>
<td>Kæp</td>
<td>Sirup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nabo</td>
<td>Politi</td>
<td>Net</td>
<td>Tapet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevø</td>
<td>Pyjamas</td>
<td>Ven</td>
<td>Totem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pokal</td>
<td>Risiko</td>
<td>Sut</td>
<td>Utæt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puma</td>
<td>Roligan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosin</td>
<td>Salami</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sofa</td>
<td>Simili</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuba</td>
<td>Tulipan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uro</td>
<td>Vitamin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3 Bilag – ord fordelt på testklasse i pilotstudiet

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dag 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hæl</td>
<td>44</td>
<td>Kamel</td>
<td>15</td>
<td>Fe</td>
<td>58</td>
<td>Bæk</td>
<td>29</td>
<td>Utæt</td>
</tr>
<tr>
<td>2</td>
<td>Mel</td>
<td>45</td>
<td>Uro</td>
<td>16</td>
<td>Kup</td>
<td>59</td>
<td>Tuba</td>
<td>30</td>
<td>Pyjamas</td>
</tr>
<tr>
<td>3</td>
<td>Minut</td>
<td>46</td>
<td>Diadem</td>
<td>17</td>
<td>Ananas</td>
<td>60</td>
<td>Sut</td>
<td>31</td>
<td>Feta</td>
</tr>
<tr>
<td>4</td>
<td>Politi</td>
<td>47</td>
<td>Mosaik</td>
<td>18</td>
<td>Nål</td>
<td>61</td>
<td>Koloni</td>
<td>32</td>
<td>Rodeo</td>
</tr>
<tr>
<td>5</td>
<td>Bavian</td>
<td>48</td>
<td>Kahyt</td>
<td>19</td>
<td>Totem</td>
<td>62</td>
<td>Butik</td>
<td>33</td>
<td>Domino</td>
</tr>
<tr>
<td>6</td>
<td>Kæp</td>
<td>49</td>
<td>Musik</td>
<td>20</td>
<td>Nabo</td>
<td>63</td>
<td>Ven</td>
<td>34</td>
<td>Tapet</td>
</tr>
<tr>
<td>7</td>
<td>Bikini</td>
<td>50</td>
<td>Kapitel</td>
<td>21</td>
<td>Tulipan</td>
<td>64</td>
<td>Asiat</td>
<td>35</td>
<td>Dyt</td>
</tr>
<tr>
<td>8</td>
<td>Rosin</td>
<td>51</td>
<td>Dato</td>
<td>22</td>
<td>Violin</td>
<td>65</td>
<td>Salat</td>
<td>36</td>
<td>Okapi</td>
</tr>
<tr>
<td>9</td>
<td>Avis</td>
<td>52</td>
<td>Risiko</td>
<td>23</td>
<td>Rologian</td>
<td>66</td>
<td>Sofa</td>
<td>37</td>
<td>Pilot</td>
</tr>
<tr>
<td>10</td>
<td>Magi</td>
<td>53</td>
<td>Dynamit</td>
<td>24</td>
<td>Kys</td>
<td>67</td>
<td>Nevø</td>
<td>38</td>
<td>Motorik</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dag 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Lim</td>
<td>54</td>
<td>Juvel</td>
<td>25</td>
<td>Net</td>
<td>68</td>
<td>Hik</td>
<td>40</td>
<td>Banan</td>
</tr>
<tr>
<td>12</td>
<td>Kakao</td>
<td>55</td>
<td>Fem</td>
<td>26</td>
<td>Vin</td>
<td>69</td>
<td>Gås</td>
<td>41</td>
<td>Idiot</td>
</tr>
<tr>
<td>13</td>
<td>Melon</td>
<td>56</td>
<td>Duel</td>
<td>27</td>
<td>Buket</td>
<td>70</td>
<td>Lava</td>
<td>42</td>
<td>Dyk</td>
</tr>
<tr>
<td>14</td>
<td>Hotel</td>
<td>57</td>
<td>Vitamin</td>
<td>28</td>
<td>Puma</td>
<td>71</td>
<td>Pokal</td>
<td>43</td>
<td>Hat</td>
</tr>
<tr>
<td>15</td>
<td>Fe</td>
<td>58</td>
<td>Bæk</td>
<td>29</td>
<td>Utæt</td>
<td>72</td>
<td>Melodi</td>
<td>44</td>
<td>Kamel</td>
</tr>
<tr>
<td>16</td>
<td>Kup</td>
<td>59</td>
<td>Tuba</td>
<td>30</td>
<td>Pyjamas</td>
<td>1</td>
<td>Hæl</td>
<td>45</td>
<td>Uro</td>
</tr>
<tr>
<td>17</td>
<td>Ananas</td>
<td>60</td>
<td>Sut</td>
<td>31</td>
<td>Feta</td>
<td>2</td>
<td>Mel</td>
<td>46</td>
<td>Diadem</td>
</tr>
<tr>
<td>18</td>
<td>Nål</td>
<td>61</td>
<td>Koloni</td>
<td>32</td>
<td>Rodeo</td>
<td>3</td>
<td>Minut</td>
<td>47</td>
<td>Mosaik</td>
</tr>
<tr>
<td>19</td>
<td>Totem</td>
<td>62</td>
<td>Butik</td>
<td>33</td>
<td>Domino</td>
<td>4</td>
<td>Politi</td>
<td>48</td>
<td>Kahyt</td>
</tr>
<tr>
<td>20</td>
<td>Nabo</td>
<td>63</td>
<td>Ven</td>
<td>34</td>
<td>Tapet</td>
<td>5</td>
<td>Bavian</td>
<td>49</td>
<td>Musik</td>
</tr>
<tr>
<td>21</td>
<td>Tulipan</td>
<td>64</td>
<td>Asiat</td>
<td>35</td>
<td>Dyt</td>
<td>6</td>
<td>Kæp</td>
<td>50</td>
<td>Kapitel</td>
</tr>
<tr>
<td>Dag 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Violin</td>
<td>65</td>
<td>Salat</td>
<td>36</td>
<td>Okapi</td>
<td>7</td>
<td>Bikini</td>
<td>51</td>
<td>Dato</td>
</tr>
<tr>
<td>23</td>
<td>Rologian</td>
<td>66</td>
<td>Sofa</td>
<td>37</td>
<td>Pilot</td>
<td>8</td>
<td>Rosin</td>
<td>52</td>
<td>Risiko</td>
</tr>
<tr>
<td>24</td>
<td>Kys</td>
<td>67</td>
<td>Nevø</td>
<td>38</td>
<td>Motorik</td>
<td>9</td>
<td>Avis</td>
<td>53</td>
<td>Dynamit</td>
</tr>
<tr>
<td>25</td>
<td>Net</td>
<td>68</td>
<td>Hik</td>
<td>39</td>
<td>Bas</td>
<td>10</td>
<td>Magi</td>
<td>54</td>
<td>Juvel</td>
</tr>
<tr>
<td>Dag 4</td>
<td>33</td>
<td>Domino</td>
<td>4</td>
<td>Politi</td>
<td>47</td>
<td>Mosaik</td>
<td>18</td>
<td>Bikini</td>
<td>62</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>34</td>
<td>Tapet</td>
<td>5</td>
<td>Bavian</td>
<td>48</td>
<td>Kahyt</td>
<td>19</td>
<td>Nål</td>
<td>63</td>
<td>Ven</td>
</tr>
<tr>
<td>35</td>
<td>Dyt</td>
<td>6</td>
<td>Kæp</td>
<td>49</td>
<td>Musik</td>
<td>20</td>
<td>Totem</td>
<td>64</td>
<td>Asiat</td>
</tr>
<tr>
<td>36</td>
<td>Okapi</td>
<td>7</td>
<td>Bikini</td>
<td>50</td>
<td>Kapitel</td>
<td>21</td>
<td>Nabo</td>
<td>65</td>
<td>Salat</td>
</tr>
<tr>
<td>37</td>
<td>Pilot</td>
<td>8</td>
<td>Rosin</td>
<td>51</td>
<td>Dato</td>
<td>22</td>
<td>Tulipan</td>
<td>66</td>
<td>Sofa</td>
</tr>
<tr>
<td>38</td>
<td>Motorik</td>
<td>9</td>
<td>Avis</td>
<td>52</td>
<td>Risiko</td>
<td>23</td>
<td>Violin</td>
<td>67</td>
<td>Nevø</td>
</tr>
<tr>
<td>39</td>
<td>Bas</td>
<td>10</td>
<td>Magi</td>
<td>53</td>
<td>Dynamit</td>
<td>24</td>
<td>Roligan</td>
<td>68</td>
<td>Hik</td>
</tr>
<tr>
<td>40</td>
<td>Banan</td>
<td>11</td>
<td>Lim</td>
<td>54</td>
<td>Juvel</td>
<td>25</td>
<td>Kys</td>
<td>69</td>
<td>Gås</td>
</tr>
<tr>
<td>41</td>
<td>Idiot</td>
<td>12</td>
<td>Kakao</td>
<td>55</td>
<td>Fem</td>
<td>26</td>
<td>Net</td>
<td>70</td>
<td>Lava</td>
</tr>
<tr>
<td>42</td>
<td>Dyk</td>
<td>13</td>
<td>Melon</td>
<td>56</td>
<td>Duel</td>
<td>27</td>
<td>Vin</td>
<td>71</td>
<td>Pokal</td>
</tr>
<tr>
<td>43</td>
<td>Hat</td>
<td>14</td>
<td>Hotel</td>
<td>57</td>
<td>Vitamin</td>
<td>28</td>
<td>Buket</td>
<td>72</td>
<td>Melodi</td>
</tr>
<tr>
<td>Ordningsnummer efter faldende hyppighed</td>
<td>Bogstav</td>
<td>Hyppighed i procent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>16,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>7,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>6,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>5,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>5,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L</td>
<td>5,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>O</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>G</td>
<td>4,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>3,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>V</td>
<td>2,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>2,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>U</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>P</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ä</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Ø</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Æ</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Y</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>J</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100%
W, X, Z og Q: hver mindre end 0,02%.

Ordlængde er 4,8 bogstaver.

8.4.1 Førtest

Overblik over testsessioner og rækkefølgen i testene ved førtest i børnehaveklassen (januar-februar, 2017)

<table>
<thead>
<tr>
<th>Førtest-batteri:</th>
<th>Udførsel</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAG 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forlyd rim, Konsonanter</td>
<td>3 grupper af 6-7</td>
<td>1 modul</td>
</tr>
<tr>
<td>Bogstaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Læs</td>
<td>Individuelt</td>
<td>1 modul</td>
</tr>
<tr>
<td>DAG 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stav (10 ord)</td>
<td>5 grupper af 4-5</td>
<td>2 moduler</td>
</tr>
<tr>
<td>Bogstavlyd</td>
<td>3 grupper af 6-7</td>
<td>1 modul</td>
</tr>
<tr>
<td>Ordforråd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.4.2 Eftertest

Overblik over testsessioner og rækkefølgen i testene ved umiddelbar eftertest (marts-april, 2017) i børnehaveklassen

<table>
<thead>
<tr>
<th>Eftertest-batteri:</th>
<th>Udførsel</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAG 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stav (18 ord)</td>
<td>4 grupper af 4</td>
<td>2 moduler</td>
</tr>
<tr>
<td>DAG 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konsonanter</td>
<td>2 grupper af 8</td>
<td>1 modul</td>
</tr>
<tr>
<td>Bogstaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skriv frit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordforråd</td>
<td>2 grupper af 8</td>
<td>1 modul</td>
</tr>
<tr>
<td>Bogstavlyd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Læs</td>
<td>Individuelt</td>
<td>1 modul</td>
</tr>
</tbody>
</table>
8.4.3 Opfølgende eftertest
Overblik over testsessioner og rækkefølgen i testene ved opfølgende eftertest i slutningen af 1.klasse (april, 2018)

<table>
<thead>
<tr>
<th>Opfølgende eftertest-batteri:</th>
<th>Udførsel</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAG 1 (morgen):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staveprøve 1</td>
<td>3 grupper af 6-7</td>
<td>1 modul</td>
</tr>
<tr>
<td>Ordlæseprøve 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAG 1 (eftermiddag):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staveprøve 2</td>
<td>3 grupper af 6-7</td>
<td>1 modul</td>
</tr>
</tbody>
</table>
8.5

Bilag - vejledning til test, som er er udviklet til studierne i denne afhandling

8.5.1 Vejledning til staveprøve ved førtest

Inden testen:

1. Kontakt læreren og aftal følgende
 a. Aftal at læreren deler klassen ind i de fem grupper (4-5 elever pr gruppe), som tages ud på skift. Kriterie – gruppendynamikken skal fremme arbejdsro, de skal ikke samarbejde eller hjælpe hinanden, så det er ikke vigtigt hvordan de samarbejder.

2. Forbered
 a. Print stavetest til alle (skriveark med billeder og nummer)
 b. Udfyl stavetestens elevark med elevnavn og skole
 c. Print testlederarket med eksempelsætninger og ”målord”
 d. Print 5 alfabettavler
 e. Gør testlokalet klar
 i. Vælg pladser til eleverne
 ii. Stil karton op mellem eleverne
 iii. Del alfabettavler, elevark og blyanter ud

I klassen:

1. Hent gruppe 1 og gå med gruppen til testlokalet

I testlokalet:

2. Forklar hvordan opgaven er bygget op.
 FORKLARING:

3. Forklar hvordan de løser opgaven – brug øveopgave 1 og 2
 FORKLARING:

6. Gå med eleverne tilbage til klassen og hent den næste gruppe

Testlederark

<table>
<thead>
<tr>
<th>Items</th>
<th>Sætning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bas</td>
<td>En bas ligner lidt en guitar</td>
</tr>
<tr>
<td>Glas</td>
<td>Det er et højt coca cola glas</td>
</tr>
<tr>
<td>Lus</td>
<td>Lus bor i menneskers hår</td>
</tr>
<tr>
<td>Fem</td>
<td>Fem kommer lige efter fire</td>
</tr>
<tr>
<td>Kanin</td>
<td>Her er en sød kanin</td>
</tr>
<tr>
<td>Sten</td>
<td>Ved stranden er der mange sten</td>
</tr>
<tr>
<td>Roligan</td>
<td>Her ser I skurken Ronnie Roligan</td>
</tr>
<tr>
<td>Sæk</td>
<td>Julemanden brugen en sæk til at have gaver i</td>
</tr>
<tr>
<td>Kamel</td>
<td>En kamel har to pukler</td>
</tr>
<tr>
<td>Megafon</td>
<td>I en megafon bliver dammens stemme høj</td>
</tr>
</tbody>
</table>
8.5.2 Vejledning til læseprøve ved før- og eftertest

Inden testen

1. Aftal med læreren at eleverne kommer ud i alfabetisk rækkefølge
2. Aftal med læreren at der er et ledig lokale nær klassen
3. Husk lydoptager

I klassen

1. Gå med 1. elev på listen til testlokalet
2. Læg lydoptager på bordet
3. Hold ordkort i hånden-sørg for at rækkefølgen er korrekt (se testlederark)
4. Forklar hvordan opgaven er bygget op.

FORKLARING:
Okay ... (elevens navn). Her i min hånd holder jeg nogle kort. Om lidt skal du prøve at se om du kan læse hvad der står ved at sætte lyd på bogstaverne. Jeg viser dig hvad du skal gøre om lidt. Jeg optager dit svar, så kan jeg nemlig i fred og ro lytte til det når jeg kommer hjem. Der er 12 ord, men du skal ikke nødvendigvis læse dem alle sammen.

Øveopgave
[lav øveopgave til læsetest]
Her kan du se et ord [Viser eleven det ord ved at lægge et kort på bordet foran eleven og pege på ordet.] Det har to bogstaver. Jeg prøver at sætte lyd på bogstaverne 1 for 1 og så kan jeg måske høre hvad der står...
[gør det]
Nu er det din tur. Prøv at finde ud af hvad der står på kortet ved at sætte lyd på de bogstaver du kender på kortet. Det er ikke sikkert du kender alle lydene, men du må også gerne gætte. [hvis eleven ikke kommer frem til noget så spørg om de kan sige bogstavers lyde. Hvis de heller ikke kommer frem til disse så spørg efter bogstavers navne. Hvis barnet ikke har et bud, så gentag proceduren fra første øveord]

Træningsopgave
1. Forbered

1a. Print Skriv frit til alle
1b. Udfyld Skriv frit elevark med elevnavn og skole
1c. Gør testlokalet klar
 - Vælg pladser til eleverne
 - Stil karton op mellem eleverne
 - Del alfabetavler, elevark og blyanter ud

2. I testlokalet (testen følger umiddelbart efter en anden-test).

2a. Forklar hvordan opgaven er bygget op.

 - FORKLARING:

 - 5 MIN MED FRI SKRIVNING (testtager tager tid)
 * Testtager hjælper børnene til at komme videre, hvis de går i stå i forhold til indhold. Testtager opmuntrer børnene at skrive de ord de gerne vil skrive ved at skrive de lyde de kan høre i ordene.

 - AFSLUTNING
 * Godt, så er tiden gået, jeg samler jeres tekster ind. [Ros børnene for deres arbejde].
8.6 Bilag - børnenes arbejdsark til test, som er udviklet til studierne i denne afhandling

8.6.1 Arbejdsark til staveprøven ved førtest

ELEV

SKOLE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Billede af al

Billede af fe
8.6.2 Arbejdsark til staveprøven ved eftertest

ELEV

SKOLE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6.3 Arbejdsark til læseprøven ved før- og eftertest

mål pil
mel rosin
vin vokal
pris motel

plus domino

totem tulipan

øveord øveord

ko lim
NAVN:

SKOLE:

Billede af de tre aliens

Skriv en besked til Aliens.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
8.7 Bilag - korrespondance fonologisk afstandsscore stavetest (før/efter)

8.7.1 Generelle korrespondancer – bruges til alle ord i stavetesten (før/efter)

<table>
<thead>
<tr>
<th>stimulus</th>
<th>response</th>
<th>penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>j</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>k</td>
<td>0</td>
</tr>
<tr>
<td>l</td>
<td>l</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
<td>0</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>0</td>
</tr>
<tr>
<td>q</td>
<td>q</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>0</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>0</td>
</tr>
<tr>
<td>w</td>
<td>w</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>0</td>
</tr>
<tr>
<td>æ</td>
<td>æ</td>
<td>0</td>
</tr>
</tbody>
</table>
8.7.2 Specifikke korrespondancer for hvert målord i stavetesten (før/efter)

<table>
<thead>
<tr>
<th>Målord</th>
<th>Specifikke korrespondancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Før- og eftertest</td>
<td></td>
</tr>
<tr>
<td>bas</td>
<td>s,c,0</td>
</tr>
<tr>
<td></td>
<td>s,z,0</td>
</tr>
<tr>
<td>lu’s</td>
<td>u’,u,0</td>
</tr>
<tr>
<td></td>
<td>s,c,0</td>
</tr>
<tr>
<td></td>
<td>s,z,0</td>
</tr>
<tr>
<td>fem²</td>
<td>m’,m,0</td>
</tr>
<tr>
<td></td>
<td>e,e,0</td>
</tr>
<tr>
<td></td>
<td>e,æ,0</td>
</tr>
<tr>
<td>seg</td>
<td>e,e,0</td>
</tr>
<tr>
<td></td>
<td>e,æ,0</td>
</tr>
<tr>
<td></td>
<td>g,k,0</td>
</tr>
<tr>
<td></td>
<td>s,c,0</td>
</tr>
<tr>
<td></td>
<td>s,z,0</td>
</tr>
<tr>
<td>kani’n</td>
<td>n,nn,0</td>
</tr>
<tr>
<td></td>
<td>i’,i,0</td>
</tr>
<tr>
<td></td>
<td>n,nd,0</td>
</tr>
<tr>
<td>kame’l</td>
<td>m,mm,0</td>
</tr>
<tr>
<td></td>
<td>e’,i,0</td>
</tr>
<tr>
<td></td>
<td>e’,e,0</td>
</tr>
<tr>
<td></td>
<td>l,lv,0</td>
</tr>
<tr>
<td></td>
<td>l,l’d,0</td>
</tr>
<tr>
<td></td>
<td>l,lg,0</td>
</tr>
<tr>
<td>glas</td>
<td>s,c,0</td>
</tr>
<tr>
<td></td>
<td>s,z,0</td>
</tr>
<tr>
<td>sde’n</td>
<td>d,t,0</td>
</tr>
<tr>
<td></td>
<td>e’,i,0</td>
</tr>
<tr>
<td></td>
<td>e’,e,0</td>
</tr>
<tr>
<td></td>
<td>n,nd,0</td>
</tr>
<tr>
<td></td>
<td>s,c,0</td>
</tr>
<tr>
<td></td>
<td>s,z,0</td>
</tr>
<tr>
<td>øligen</td>
<td>ø,r,0</td>
</tr>
<tr>
<td></td>
<td>o:,o,0</td>
</tr>
<tr>
<td></td>
<td>o:,u,0</td>
</tr>
<tr>
<td></td>
<td>i,e,0</td>
</tr>
<tr>
<td></td>
<td>l,l,0</td>
</tr>
<tr>
<td></td>
<td>g,gg,0</td>
</tr>
<tr>
<td></td>
<td>n,nd,0</td>
</tr>
<tr>
<td>megafo’n</td>
<td>e,i,0</td>
</tr>
<tr>
<td></td>
<td>g,gg,0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>f,ff</td>
<td>0,0</td>
</tr>
<tr>
<td>o,o</td>
<td>0,0</td>
</tr>
<tr>
<td>n,nd</td>
<td>0,0</td>
</tr>
<tr>
<td>kun efter-test</td>
<td></td>
</tr>
<tr>
<td>fly'</td>
<td>y',y,0</td>
</tr>
</tbody>
</table>
| sge' | g,k,0
| | e',i,0
| | e',e,0
| | s,c,0
| | s,z,0
| led | ε,e,0
| | ε,æ,0
| | d,t,0
| | d,dt,0
| keb | ε,e,0
| | ε,æ,0
| | b,p,0
| musig | s,ss,0
| | g,k,0
| | s,c,0
| | s,z,0
| panic | n,nn,0
| | g,k,0
| vitami?n | t,tt,0
| | m,mm,0
| | i',i,0
| | n,nd,0
| femini?n | i,e,0
| | e,i,0
| | m,mm,0
| | i,e,0
| | i',i,0
| | n,nn,0
| | n,nd,0 |
8.8 Bilag - korrespondance fonologisk afstandsscore læsetest (før/efter)

8.8.1 Eksempel på korrespondance for sproglyden [l] i ordet mål

<table>
<thead>
<tr>
<th>sproglyd i syntese</th>
<th>isoleret sproglyd</th>
<th>bogstavnavn</th>
</tr>
</thead>
<tbody>
<tr>
<td>stimulus</td>
<td>response</td>
<td>penalty</td>
</tr>
<tr>
<td>l a 1</td>
<td>l A 2</td>
<td>l α 3</td>
</tr>
<tr>
<td>l α 1</td>
<td>l B 2</td>
<td>l β 3</td>
</tr>
<tr>
<td>l b 1</td>
<td>l C 2</td>
<td>l ζ 3</td>
</tr>
<tr>
<td>l d 1</td>
<td>l D 2</td>
<td>l δ 3</td>
</tr>
<tr>
<td>l δ 1</td>
<td>l E 2</td>
<td>l ε 3</td>
</tr>
<tr>
<td>l e 1</td>
<td>l F 2</td>
<td>l η 3</td>
</tr>
<tr>
<td>l a 1</td>
<td>l G 2</td>
<td>l Θ 3</td>
</tr>
<tr>
<td>l f 1</td>
<td>l H 2</td>
<td>l Ψ 3</td>
</tr>
<tr>
<td>l g 1</td>
<td>l I 2</td>
<td>l ι 3</td>
</tr>
<tr>
<td>l h 1</td>
<td>l J 2</td>
<td>l ι 3</td>
</tr>
<tr>
<td>l i 1</td>
<td>l K 2</td>
<td>l ξ 3</td>
</tr>
<tr>
<td>l j 1</td>
<td>l L 1</td>
<td>l l 2</td>
</tr>
<tr>
<td>l k 1</td>
<td>l M 2</td>
<td>l μ 2</td>
</tr>
<tr>
<td>l l 0</td>
<td>l N 2</td>
<td>l η 3</td>
</tr>
<tr>
<td>l m 1</td>
<td>l O 2</td>
<td>l η 3</td>
</tr>
<tr>
<td>l n 1</td>
<td>l P 2</td>
<td>l ρ 3</td>
</tr>
<tr>
<td>l η 1</td>
<td>l Q 2</td>
<td>l θ 3</td>
</tr>
<tr>
<td>l o 1</td>
<td>l R 2</td>
<td>l θ 3</td>
</tr>
<tr>
<td>l p 1</td>
<td>l S 2</td>
<td>l δ 3</td>
</tr>
<tr>
<td>l r 1</td>
<td>l T 2</td>
<td>l τ 3</td>
</tr>
<tr>
<td>l s 1</td>
<td>l V 2</td>
<td>l υ 3</td>
</tr>
<tr>
<td>l c 1</td>
<td>l W 2</td>
<td>l w 3</td>
</tr>
<tr>
<td>l t 1</td>
<td>l X 2</td>
<td>l ω 3</td>
</tr>
<tr>
<td>l u 1</td>
<td>l Y 2</td>
<td>l γ 3</td>
</tr>
<tr>
<td>1</td>
<td>v</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>y</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>æ</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>ø</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>ð</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>ø</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>œ</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>œ</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>±</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>z</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Æ</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>@</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>&</td>
<td>3</td>
</tr>
</tbody>
</table>
8.9 Bilag – undervisningen
8.9.1 Rækkefølge eksperimentelle grupper

<table>
<thead>
<tr>
<th></th>
<th>Direkte lærerstøtte</th>
<th>It-støtte</th>
<th>Indirekte lærerstøtte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Børnehaveklasse 1</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
</tr>
<tr>
<td>Børnehaveklasse 2</td>
<td>3.</td>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>Børnehaveklasse 3</td>
<td>2.</td>
<td>3.</td>
<td>1.</td>
</tr>
<tr>
<td>Børnehaveklasse 4</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
</tr>
<tr>
<td>Børnehaveklasse 5</td>
<td>2</td>
<td>3.</td>
<td>1.</td>
</tr>
</tbody>
</table>

8.9.2 Fordeling af forskningsassistenter

<table>
<thead>
<tr>
<th></th>
<th>Uge 1-3</th>
<th>Uge 3-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Børnehaveklasse 1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Børnehaveklasse 2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Børnehaveklasse 3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Børnehaveklasse 4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Børnehaveklasse 5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
8.9.3 Ord til undervisningen

<table>
<thead>
<tr>
<th>Uge, dag</th>
<th>S1</th>
<th>S1K</th>
<th>S2</th>
<th>S2K</th>
<th>S3</th>
<th>K1</th>
<th>K1K</th>
<th>K2</th>
<th>K3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>bas</td>
<td>små</td>
<td>banan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>gås</td>
<td>klub</td>
<td>kamel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3</td>
<td>vin</td>
<td>slim</td>
<td>feta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,1</td>
<td>hæl</td>
<td>ble</td>
<td>lava</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td>mel</td>
<td>sne</td>
<td>nabo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>nål</td>
<td>fly</td>
<td>rosin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,1</td>
<td>plus</td>
<td>melon</td>
<td>ananas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,2</td>
<td>knæ</td>
<td>dato</td>
<td>tulipan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3</td>
<td>trin</td>
<td>puma</td>
<td>melodi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,1</td>
<td>globus</td>
<td>vitamin</td>
<td>fem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>pluto</td>
<td>bikini</td>
<td>ven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,3</td>
<td>trofæ</td>
<td>kakao</td>
<td>kys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,1</td>
<td>roligan</td>
<td>køep</td>
<td>sten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,2</td>
<td>pyjamas</td>
<td>hat</td>
<td>sky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,3</td>
<td>politi</td>
<td>bæk</td>
<td>spå</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,1</td>
<td>knæk</td>
<td>pilot</td>
<td>dynamit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,2</td>
<td>prut</td>
<td>totem</td>
<td>motorik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,3</td>
<td>glut</td>
<td>musik</td>
<td>kapitel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Antal | 6 | 9 | 9 | 3 | 9 | 6 | 6 | 3 | 3 |
Undervisningsaktiviteter i klassen

1. Har klassen arbejdet med tal og mængder i perioden? *
 Markér kun ét felt.
 ☐ Ja
 ☐ Nej

2. Hvis ja, hvor meget tid vurderer du, at klassen i gennemsnit har brugt om dagen på aktiviteter med tal og mængder? *
 Markér kun ét felt.
 ☐ mindre end 15 min om dagen
 ☐ mellem 15 og 30 min om dagen
 ☐ mellem 30 og 45 min om dagen
 ☐ mellem 45 og 60 min om dagen
 ☐ mere end 60 min om dagen

3. Har klassen arbejdet med bogstavernes form, navn og lyd i perioden? *
 Markér kun ét felt.
 ☐ Ja
 ☐ Nej

4. Hvis ja, hvor meget tid vurderer du, at klassen i gennemsnit har brugt om dagen på aktiviteter med bogstaver? *
 Markér kun ét felt.
 ☐ mindre end 15 min om dagen
 ☐ mellem 15 og 30 min om dagen
 ☐ mellem 30 og 45 min om dagen
 ☐ mellem 45 og 60 min om dagen
 ☐ mere end 60 min om dagen

5. Har klassen arbejdet med opmærksomhed på sproglyde i perioden (fx lege eller opgaver med rim og remser, ordenes første lyd, ordenes sidste lyd, høre lyde i ordene, fjerne lyde fra ordene)? *
 Markér kun ét felt.
 ☐ Ja
 ☐ Nej
6. Hvis ja, hvor meget tid vurderer du, at klassen i gennemsnit har brugt om dagen på aktiviteter med opmærksomhed på sprogøde? *
Markér kun ét felt.
- mindre end 15 min om dagen
- mellem 15 og 30 min om dagen
- mellem 30 og 45 min om dagen
- mellem 45 og 60 min om dagen
- mere end 60 min om dagen

7. Har klassen arbejdet med børnestavning i perioden? *
Markér kun ét felt.
- Ja
- Nej

8. Hvis ja, hvor meget tid vurderer du, at klassen i gennemsnit har brugt om dagen på børnestavning? *
Markér kun ét felt.
- mindre end 15 min om dagen
- mellem 15 og 30 min om dagen
- mellem 30 og 45 min om dagen
- mellem 45 og 60 min om dagen
- mere end 60 min om dagen

9. Har klassen arbejdet med læsning af lydrette ord i perioden? ("lydrette = når lydene i ordet svarer til bogstavernes standardlyd som i fx "limi" - I modsætning til i fx "log") *
Markér kun ét felt.
- Ja
- Nej

10. Hvis ja, hvor meget tid vurderer du, at klassen i gennemsnit har brugt om dagen på læsning af lydrette ord? *
Markér kun ét felt.
- mindre end 15 min om dagen
- mellem 15 og 30 min om dagen
- mellem 30 og 45 min om dagen
- mellem 45 og 60 min om dagen
- mere end 60 min om dagen
Selvevaluering - studentermedhjælper

1. 1. I hvor høj grad har du gennemgået alfabetet i starten af hver lektionen. *
 Markér kun ét felt.
 ○ Hver eller næsten hver gang
 ○ Sjældnere
 ○ Omkring halvdelen af gangene
 ○ Sjældnere
 ○ Det har jeg helt glemt
 ○ Andet: _______________________________________

2. 2. I hvor høj grad har du opmuntret børnene til at sige målordet inden de skrev det. *
 Markér kun ét felt.
 ○ Hver eller næsten hver gang
 ○ Sjældnere
 ○ Omkring halvdelen af gangene
 ○ Sjældnere
 ○ Det har jeg helt glemt
 ○ Andet: _______________________________________

3. 3. I hvor høj grad har du ladet barnet lave sin egen børnestavning, før du har givet feedback. *
 Markér kun ét felt.
 ○ Hver gang eller næsten hver gang
 ○ Sjældnere
 ○ Omkring halvdelen af gangene
 ○ Sjældnere
 ○ Det har jeg helt glemt
 ○ Andet: _______________________________________

238
4. 4. I hvor høj grad har du rost børnene efter, du har set deres første børnestavningsforsøg.

* Markér kun ét felt.

[] Hver gang eller næsten hver gang
[] Sjældnere
[] Omkring halvdelen af gangene
[] Sjældnere
[] Det har jeg helt glemt
[] Andet: ____________________________

5. 5. I hvor høj grad har du afholdt dig fra anden feedback end ros og voksenskrivning i betingelsen "ROS". *

* Markér kun ét felt.

[] Hver gang eller næsten hver gang
[] Sjældnere
[] Omkring halvdelen af gangene
[] Sjældnere
[] Det har jeg helt glemt
[] Andet: ____________________________

6. 6. I hvor høj grad har du hjulpet barnet til at blive opmærksom på ligheder og forskelle mellem voksen- og børnestavning i betingelsen "VOKSEN – DIREKTE". *

* Markér kun ét felt.

[] Hver gang eller næsten hver gang
[] Sjældnere
[] Omkring halvdelen af gangene
[] Sjældnere
[] Det har jeg helt glemt
[] Andet: ____________________________

7. 7. I hvor høj grad har du hjulpet barnet til at lytte sig frem til manglende/forkerte lyde i børnestavningen og skrive/slette de tilhørende bogstaver i betingelsen "COMPUTER". *

* Markér kun ét felt.

[] Hver gang eller næsten hver gang
[] Sjældnere
[] Omkring halvdelen af gangene
[] Sjældnere
[] Det har jeg helt glemt
[] Andet: ____________________________
8. 8. I hvor høj grad har du læst ordet med barnet, før barnet igen har lyttet til ordet for at skrive det anden gang.
Markér kun ét felt.
☐ Hver gang eller næsten hver gang
☐ Sjældnere
☐ Omkring halvdelen af gangene
☐ Sjældnere
☐ Det har jeg helt glemt
☐ Andet: __

9. 9. I hvor høj grad har du opmunret børnene skrive ordet 2 gange på samme undervisningsdag.
Markér kun ét felt.
☐ Hver gang eller næsten hver gang
☐ Sjældnere
☐ Omkring halvdelen af gangene
☐ Sjældnere
☐ Det har jeg helt glemt
☐ Andet: __

10. 10. I hvor høj grad har du ladet lektionerne for alle grupper vare 20-25 min.
Markér kun ét felt.
☐ Hver gang eller næsten hver gang
☐ Sjældnere
☐ Omkring halvdelen af gangene
☐ Sjældnere
☐ Det har jeg helt glemt
☐ Andet: __

11. Mit navn *

__

12. SKOLE *

__

13. Tidspunkt *
Markér kun ét felt.
☐ Efter uge 3
☐ Efter uge 5
8.9.6 Vejledning til forskningsassisterenterne
8.9.6.1 Unikt indhold i undervisningen
8.9.6.1.1 Direkte støtte

Efter børnene havde børnestavet:

2. Konventionel stavning under barnets børnestavning. Den voksne fortalte barnet, at hun nu ville skrive, hvordan voksne skrev målordet under barnets stavemåde. Mens hun skrev, udtalte hun den sproglyd, hvert bogstav repræsenterer, og sagde til sidst målordet, fx “Nu skal du se, hvordan voksne skriver ordet (skriver) [b æ: s:] ['bas’].

 3.1. Hvis forskningsassistenten så nogle ligheder i de to stavemåder, så opfordrede hun barnet til at kigge efter ligheder i stavemåderne: “Prøv at se på din og min stavning. Kan du se noget, der er ens?”
 3.1.1. Barnet pegede på de eller det bogstav(er), der var ens, og sagde måske deres navn. Den voksne bekræftede: “Ja, du hørte [...], ligesom mig”.
 3.1.2. Barnet udpegede ikke alle eller ingen af lighederne i de to stavemåder. Den voksne udpegede så bogstaverne og udtalte den sproglyd, de repræsenterede i ordet.
 3.2. Hvis forskningsassistenten så, at barnet havde brugt et andet bogstav end det i den voksnes stavemåde, eller barnet manglede et bogstav, så bad hun barnet om at finde forskelle i de to stavemåder: “Prøv at se på din og min stavning”. 1) “Er der nogle bogstaver i din børnestavning, som ikke er i min?” eller 2) “Er der nogle bogstaver i min stavemåde, som ikke er i din?”. 1 eller 2 vælges, så det passer med forskellen mellem de to stavemåder.
 3.2.1. Barnet pegede på det eller de bogstaver, der adskilte sig, og sagde måske deres navn. Den voksne bekræftede.
 3.2.1.1. Hvis barnet manglede at skrive en lyd som i dette eksempel, så sagde den voksne: “Ja, jeg kunne høre et [...] efter [...] og før [...], men jeg tror ikke, du hørte det, for du har ikke skrevet det”. ”Skal vi prøve at se om du også kan høre [...]?” ”Prøv at sige ordet langsomt med mig”. Barnets opmærksomhed rettes mod den korrekte stavemåde, ved at den voksne med fingeren pegede på ét bogstav ad gangen, mens ordet blev sagt langsomt. Forskningsassistenten overdrev udtalen af den lyd, som barnet overhørte: “Kan du også hører [...] nu?”

5. Barnet får nu lov at børnestave ordet igen.

8.9.6.1.2 IT-støtte

Mens børnene børnestaver:

Efter børnene havde børnestavet:

2. Ros, som ved direkte støtte punkt 1.

2.1.1. Hvis forskningsassistenten kunne se, at barnet havde stavet ordet korrekt, så bekræftede hun barnet i, at ordet også lød rigtigt i hendes ører, og at voksne også staver ordet på denne måde.

2.1.2. Hvis forskningsassistenten kunne se, at barnet havde stavet med fonologisk acceptable bogstaver, men ikke korrekt, fx BÆG for bæk, så bekræftede hun barnet i, at ordet også lød rigtigt i hendes ører, men at voksne skriver ordet med et andet bogstav. Den voksne slettede barnets bogstav og skrev det bogstav, som er i den korrekte stavemåde fx BÆK. “Hvordan lyder ordet nu?” Barnet svarede og den voksne bekræftede, at det også lød rigtigt i hendes ører, men at voksne staver ordet med bogstavet k.

2.1.3. Hvis forskningsassistenten kunne se, at barnet manglede bogstaver eller havde fonologisk ikke acceptable bogstaver i deres børnestavning, så bekræftede hun barnet i, at ordet heller ikke lød rigtigt i hendes ører: “Jeg kan også høre, at computeren ikke læser [ˈbas], det er computerens måde at fortælle dig, at den ikke kan sige [ˈbas], hvis ikke du ændrer noget i din børnestavning”.

2.1.3.2. Hvis forskningsassistenten kunne se, at barnet havde skrevet fonologisk uacceptable bogstaver, sagde hun: “Prøv at se på dette bogstav” (forskningsassistenten
2.1.3.3. Hvis forskningsassistenten kunne se, at barnet havde skrevet overflødige bogstaver, sagde hun: ”Computeren vil have, at du fjerner nogle bogstaver, for at den kan læse ordet rigtigt. Prøv at sige ordet igen, og lyt til lydene. Måske kan du høre, at nogle af bogstaverne ikke er i ordet? Prøv at fjerne de(t) overflødig(e) bogstav(er), og lyt så, om computeren nu læser ordet korrekt”. Hvis barnet ikke selv med støtte fra oplæsningen kunne fjerne de(t) overflødige bogstav(er), så sagde forskningsassistenten ordet langsomt, mens hun pegede på de sproglyde, der var i ordet. ”Kan du høre, hvor der er et bogstav for meget? Prøv at fjerne det, og lyt så, om computeren nu læser ordet korrekt”. Hvis barnet fortsat ikke kunne komme frem til hvilke bogstav, det skulle fjerne, så pegede forskningsassistenten på det sted i ordet, hvor bogstavet var for meget. ”Prøv at fjerne bogstavet, og prøv så at lytte. Siger den det rigtige ord nu?”

3. Herfra som punkt 4-5 ved direkte lærerstøtte.

8.9.6.1.2.1 Indirekte lærerstøtte
Efter børnene har børnestavet:

1. Som trin 1 til 2 direkte støtte
2. Som punkt 4-5 ved direkte lærerstøtte.
8.9.7 Figuroversigt
Figur 1.1 ... 8
Figur 1.2 .. 11
Figur 2.1 .. 19
Figur 3.1 .. 39
Figur 3.2 .. 40
Figur 3.3 .. 41
Figur 3.4 .. 43
Figur 3.5 .. 51
Figur 3.6 .. 57
Figur 3.7 .. 58
Figur 3.8 .. 58
Figur 3.9 .. 59
Figur 3.10 ... 60
Figur 3.11 ... 60
Figur 3.12 ... 62
Figur 3.13 ... 63
Figur 3.14 ... 64
Figur 3.15 ... 64
Figur 3.16 ... 68
Figur 3.17 ... 70
Figur 3.18 ... 70
Figur 3.19 ... 71
Figur 3.20 ... 72
Figur 3.21 ... 745
Figur 3.22 ... 84
Figur 3.23 ... 87
Figur 3.24 ... 87
Figur 3.25 ... 91
Figur 3.26 ... 98
Figur 3.27 ... 98
Figur 3.28 ... 99
Figur 3.29 ... 101
Figur 3.30 ... 101
Figur 3.31 ... 102
Figur 4.1 .. 159
Figur 4.2 .. 159
Figur 4.3a ... 159
Figur 4.3 .. 159
Figur 4.4 .. 160
Figur 4.5 .. 160
Figur 4.6 .. 160
Figur 4.7 .. 161
Figur 4.8 .. 163
8.9.8 Tabeloversigt

Tabel 3.1 ... 27
Tabel 3.2 ... 53
Tabel 3.3 ... 54
Tabel 3.4 ... 81
Tabel 3.5 ... 83
Tabel 3.6 ... 89
Tabel 3.7 ... 89
Tabel 3.8 ... 93
Tabel 3.9 ... 94
Tabel 3.10 ... 95
Tabel 3.11 ... 95
Tabel 3.12 ... 96
Tabel 3.13 ... 97
Tabel 3.14 ... 103
Tabel 3.15 ... 104
Tabel 3.16 ... 105
Tabel 4.1 ... 128
Tabel 4.2 ... 132
Tabel 4.3 ... 135
Tabel 4.4 ... 139
Tabel 4.5 ... 148
Tabel 4.6 ... 158
Tabel 4.7 ... 164
Tabel 4.8 ... 165
Tabel 4.9 ... 166
Tabel 4.10 ... 168
Tabel 4.11 ... 169
Tabel 4.12 ... 170
Tabel 4.13 ... 171
Tabel 4.14 ... 172