

Danish University Colleges

Java for Cost Effective Embedded Real-Time Software

Korsholm, Stephan Erbs

Publication date:
2012

Document Version
Post-print: The final version of the article, which has been accepted, amended and reviwed by the publisher, but
without the publisher's layout.

Link to publication

Citation for pulished version (APA):
Korsholm, S. E. (2012). Java for Cost Effective Embedded Real-Time Software.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

https://www.ucviden.dk/portal/en/publications/java-for-cost-effective-embedded-realtime-software(d4f26d6d-4bc6-4c91-a29b-0a8a54d834fd).html

Java for Cost E�ective
Embedded Real-Time Software

Stephan E. Korsholm

Ph.D. Dissertation, August 2012

Abstract
This thesis presents the analysis, design and implementation of the Hardware
near Virtual Machine (HVM) - a Java virtual machine for embedded devices.
The HVM supports the execution of Java programs on low-end embedded hard-
ware environments with as little as a few kB of RAM and 32 kB of ROM.
The HVM is based on a Java-to-C translation mechanism and it produces self-
contained, strict ANSI-C code that has been specially crafted to allow it to
be embedded into existing C based build and execution environments; environ-
ments which may be based on non standard C compilers and libraries. The
HVM does not require a POSIX-like OS, nor does it require a C runtime library
to be present for the target. The main distinguishing feature of the HVM is
to support the stepwise addition of Java into an existing C based build and
execution environment for low-end embedded systems. This will allow for the
gradual introduction of the Java language, tools and methods into a existing
C based development environment. Through program specialization, based on
a static whole-program analysis, the application is shrinked to only include a
conservative approximation of actual dependencies, thus keeping down the size
of the resulting Java based software components.

The Safety-Critical Java speci�cation (SCJ), Level 0 and 1, has been imple-
mented for the HVM, which includes preemptive task scheduling. The HVM
supports well known concepts for device level programming, such as Hardware
Objects and 1st level interrupt handling, and it adds some new ones such as
native variables. The HVM is integrated with Eclipse.

The work presented here is documented in 5 conference papers, 1 journal
article, and 1 extended abstract, which are all included as part of this thesis. A
summary of these papers is given in a separate Section.

2

Contents
1 Introduction 6

1.1 Motivation . 7
1.2 Contribution . 10
1.3 Delimitation . 12

2 An Industrial Case: KT4585 13
2.1 RTOS . 14
2.2 CPU and Memory . 15
2.3 Device I/O . 18
2.4 Interrupts . 19
2.5 C Runtime . 19
2.6 Application Code . 20
2.7 Programming Environment . 20

3 Requirements Analysis - The Industrial Case 21
3.1 Programming Environment Requirements 22
3.2 Software Integration Requirements 23
3.3 Hardware Integration Requirements 23
3.4 Performance Requirements . 24
3.5 Requirements for Embedded Java 25

4 Requirements Analysis - State-of-the-art 28
4.1 Java execution styles . 28

4.1.1 Interpretation . 28
4.1.2 AOT Compilation . 29
4.1.3 JIT Compilation . 31

4.2 Execution Styles for Embedded Platforms 32
4.3 State-of-the-art Environments . 33

4.3.1 JamVM . 33
4.3.2 CACAO . 34
4.3.3 GCJ . 34
4.3.4 FijiVM . 35
4.3.5 KESO . 37
4.3.6 JamaicaVM . 37

4.4 Opportunities for Embedded Java 38

5 The HVM - Design 40
5.1 HVM Demonstration . 40
5.2 Methods . 43

5.2.1 Intelligent Class Linking 43
5.2.2 Self-contained Source Code Generation 46
5.2.3 ROM/RAM aware . 47
5.2.4 Hybrid Execution Style 47
5.2.5 Easy Activation . 48

3

5.2.6 Code e�ciency . 49
5.2.7 Code e�ciency - Producer-Consumer Analysis 51
5.2.8 Code e�ciency - Devirtualization 52
5.2.9 Code e�ciency - Other Optimizations 53
5.2.10 Hardware Objects . 53
5.2.11 1st Level Interrupt Handling 53
5.2.12 API Independence . 54
5.2.13 Native Variables . 54

5.3 Results . 55
5.3.1 Integrating With an RTOS 55
5.3.2 Full SCJ application . 57

6 The HVM - Implementation 60

7 HVM Evaluation 62
7.1 Method . 62

7.1.1 Benchmark execution - High-end Platforms 64
7.1.2 Benchmark execution - Low-end Platforms 64

7.2 Results . 65
7.3 Discussion . 66

8 Summary and Contributions 68
8.1 The Java Legacy Interface - JTRES 2007 68
8.2 Hardware Objects for Java - ISORC 2008 68
8.3 Interrupt Handlers in Java - ISORC 2008 68
8.4 A Hardware Abstraction Layer in Java - TECS Journal 2011 . . 68
8.5 Flash Memory in Embedded Java Programs - JTRES 2011 . . . 69
8.6 Towards a Real-Time, WCET Analysable JVM Running in 256

kB of Flash Memory - Nordic Workshop on Programming Theory
2011 . 69

8.7 Safety-Critical Java for Low-End Embedded Platforms - JTRES
2012 . 69

9 Future Work 70
9.1 Tool Support . 70

9.1.1 Debugging . 70
9.2 Large Scale Industrial Experiments 70
9.3 HVM optimizations . 71
9.4 HVM Optimizations Correctness 72
9.5 Java Level GC . 72
9.6 Merging HVM with KESO, FijiVM and others 72
9.7 HVM in Educational Settings . 73
9.8 HVM for .NET . 73

10 Conclusion 74

4

11 Acknowledgement 75

5

1 Introduction
Successful companies within the technology industry constantly monitor and
optimize the work processes of their production. "Lean manufacturing" is one
well known example of a production practice that constantly optimizes work
processes in order to increase earnings.

Similarly for the development of software intensive products: new e�orts
are continually undertaken to increase the productivity and quality of software
development.

This thesis presents technical solutions that may increase the usability and
attractiveness of the Java programming language as a programming language
for embedded software development. The principle aim of this e�ort is to o�er
tools that will increase productivity and quality of software development for
embedded platforms.

The experimental work is embodied in the HVM (Hardware near Virtual
Machine). The HVM is a lean Java virtual machine for low-end embedded
devices. It is a Java-to-C compiler but it also supports interpretation. The
main distinguishing feature of the HVM is its ability to translate a single piece
of Java code into a self contained unit of ANSI-C compatible C code that can
be included in an existing build environment without adding any additional
dependencies. The raison d’être of the HVM is to support the stepwise addition
of Java into an existing C based build and execution environment for low-end
embedded systems. Other important features of the HVM are,

� Intelligent class linking. A static analysis of the Java source base is per-
formed. This computes a conservative estimate of the set of classes and
methods that may be executed in a run of the program. Only this set is
translated into C and included in the �nal executable

� Executes on the bare metal (no POSIX-like OS required). The generated
source code is completely self contained and can be compiled and run
without the presence of an OS or C runtime library

� Hybrid execution style. Individual methods (or all methods) can be
marked for compilation into C or interpretation only. Control can ow
from interpreted code into compiled code and vice versa. Java excep-
tions are supported and can be thrown across interpretation/compilation
boundaries

� 1st level interrupt handling. The generated code is reentrant and can
be interrupted at any point to allow for the immediate handling of an
interrupt in Java space

� Hardware object support. Hardware objects according to [57] are sup-
ported.

� Native variable support. Native variables as described in Section 5.2.13
are supported

6

� Extreme portability. Generated code does not utilize compiler or run-
time speci�c features and can be compiled by most cross compilers for
embedded systems e.g. GCC or the IAR C Compiler from Nohau [44]

� The HVM supports the SCJ speci�cation [65] Level 0 and 1. It does not
support garbage collection but relies on the SCJ scoped memory model
for memory management. The HVM can execute the miniCDj benchmark
from [52].

The design and implementation of the HVM is described in detail in Section 5.

1.1 Motivation
The Java programming language, a safe and well structured high level, object
oriented development language has, since the mid 90’s, been successfully ap-
plied on desktop and server platforms to cope with the increasing complexity
of software systems. Empirical research has shown that this shift from previous
languages and environments - mostly C - to a high-level language like Java sig-
ni�cantly increases the productivity of the average software developer [48, 55].

There are many reasons why the use of Java, as opposed to C, will increase
productivity. Some important reasons are:

� Java expresses important object oriented concepts, such as encapsulation
and modularization, through simple language constructs. High level lan-
guages in general invite, through their design, the developer to write soft-
ware that is amenable to reuse and easy to maintain and extend

� The way Java manages and accesses memory prevents a number of com-
mon mistakes that are easier to make in C

� But equally important as the language itself, Java, and other high-level
object oriented languages, are usually accompanied by a range of open-
source, e�cient development tools such as Eclipse. Eclipse supports a
wide range of tools and frameworks that may help the software developer
to develop better software, by using e.g. Unit testing and UML modeling.

Yet, the advantages of, and experiences from, high level programming lan-
guages and object oriented design principles and best practices, as they have
been used on the desktop and server platforms, have so far not found widespread
use on the embedded platforms used in industrial settings. Even today the C,
C++ and assembly languages are in total by far the most predominant lan-
guages ([56], page 27) when programming small resource constrained devices
to control e.g. machinery in a production line or sensors and actuators in the
automotive industry. Some of the main reasons are:

� Not incremental. Java environments tend to require the inclusion of a
signi�cant amount of functionality even when this functionality is not
used by a given program. E.g. running a HelloWorld type of application

7

using a standard Java execution environment requires the loading of many
hundreds of classes. As a result the embedded programmer will often
�nd that adding a small piece of Java functionality requires the use of a
disproportionate amount of memory resources (both RAM and ROM). It is
natural to expect that when you add a piece of Java software to an existing
code base you pay for what you actually use, but no more than that. If a
Java environment lives up to this expectation, it is incremental, otherwise
it is monolithic. Until now almost all embedded Java environments lean
strongly towards being monolithic

� Not integratable. Integration with existing RTOS build and execution
environments written in C is di�cult, since Java environments tend to
be based on a closed world assumption: the JVM is the main execution
controller and only limited amounts of C are used for speci�c purposes.
The contrary is the case for companies contemplating the use of Java: the
existing RTOS execution environment is the main execution controller.
Additionally, Java software modules cannot dictate build procedures but
rather have to be added to the existing build and execution environment.
Also, the Java language shields the programmer from the lower levels
of the software and hardware stack. Direct access to e.g. memory and
device registers, and direct access to data in the underlying RTOS (usually
written in C) is not part of the language itself and makes it di�cult to
integrate Java with a particular hardware environment. This is especially
troublesome for embedded systems, that usually tend to communicate
with and control hardware to a much greater extent than non-embedded
environments

� Not e�cient. Embedded software developers expect that functionality
written in Java will execute as fast, or almost as fast as C, and they
will expect that the size required to store Java objects in memory is ap-
proximately the same as the size required to store them using legacy lan-
guages. Recently embedded Java environments has proven their e�ciency,
but until now concerns about e�ciency have been important to embedded
developers contemplating the use of Java for embedded systems.

C environments are better at managing dependencies and they o�er a larger
degree of incrementality than Java environments. The baseline o�set in terms of
program memory of simple C functionality is very small. C can directly access
memory and device registers and C can easily be integrated, in an incremental
manner, with any build and execution environment. C compilers have developed
over many years and produce e�cient code for a large range of platforms, both
in terms of execution speed and memory requirements. C is the standard for
any other execution environment in terms of e�ciency. So C has been a natural
choice of language for embedded software engineers, since C, to a higher degree
than higher level languages, enables the engineer to control, in detail, the use
of the limited memory- and computational resources available.

8

An underlying assumption of this thesis is that high level languages like
Java are better programming languages than low level languages in terms of
programmer e�ciency and in terms of software quality in general. This claim
is supported by research for desktop and server platforms [48, 55] and it is
an assumption here that it holds true for embedded platforms as well. As
the following sections will show, the latter problem with lack of e�ciency of
embedded Java has been solved already - and today’s state-of-the-art embedded
Java environments execute almost as e�ciently as C - but the former two issues
concerning incrementality and integratability remains open issues making the
utilization of Java di�cult for low-end embedded systems.

So how can the drawbacks of higher level languages be eliminated while
keeping their advantages? If this problem can be solved, the architectural power
of object oriented environments can be used at the level of embedded systems
development. If the embedded systems engineer can be empowered through
the use of object oriented methods and best practices to conquer the growing
complexity of embedded systems, while maintaining the ability to control the
hardware in detail, the industry as such will be able to develop software faster
and to increase the quality of the software.

The Problem

Let us go back in time a couple of decades and consider a company that has
done most of its embedded development in assembler, but now seeks to use the
higher level programming language C for some parts of new functionality. They
would expect the following:

� Incrementality. If they add a certain limited set of functionality in C they
would expect to pay a cost, in terms of memory requirements, proportional
to the functionality added - in other words, they will expect to pay for
what they use, but not more than that

� Integratability. They should not have to change to a new build environ-
ment or build strategy. It should be possible to add C software artifacts
to their current build environment. Also, they should not have to change
their RTOS or scheduling policy. New code produced in C should be
able to be executed by the existing execution environment and be easily
integratable with existing assembler code

� E�ciency. In terms of execution time, they may accept a limited degra-
dation for C code, but not by an order of magnitude.

These assumptions hold for the C programming language and the tool chains
supporting it. Now consider the same company today exploring the options of
using the even higher level language Java for writing new software components.
They will �nd that no existing Java environment will be able to meet all of the
above expectations.

9

1.2 Contribution
The main contribution of this work is the HVM. It is an e�cient, integratable
and incremental execution environment for low-end embedded systems. The
HVM can execute the example code shown in Figure 1 (compiled against e.g.
the latest JDK1.7) on a low-end embedded platform with 256 kB Flash and just
a few kB of RAM.

ArrayList<String> list = new ArrayList<String>();

list.add("foo");
list.add("horse");
list.add("fish");
list.add("London");
list.add("Jack");

Object[] array = list.toArray();
Arrays.sort(array);

Figure 1: HVM Example

The HVM compiler is implemented as an Eclipse plugin but may also run from
the command line. Figure 2 shows how the Java-to-C compilation can be acti-
vated from inside Eclipse. An additional view, entitled ’Icecap tools dependency
extent’ below, shows the user all the dependencies that will be translated to C.

10

Figure 2: HVM Environment in Eclipse

Static methods implemented in Java and translated to C can easily be called
from existing C code, thus supporting the seamless integration between C and
Java. Since Java is translated into C, a high level of e�ciency is achieved, on
some platforms within 30% of native C.

Yet, this is just one step forward. There is still the important task of making
the ensemble applicable to hard real-time safety critical embedded systems. In
the course of its short life time the HVM has already been extended with tools
to start this work:

� SCJ (Safety-Critical Java) pro�le. To support the SCJ, features have
been added to the HVM to support preemptive task scheduling, scoped
memory allocation and a real-time clock. On top of these features the
SCJ Level 0 and 1 speci�cation has been implemented and is available as
part of the HVM distribution

� WCET (Worst Case Execution Time) analysis. In their thesis work and
paper [23] the authors present the tool TetaJ that statically determine
the WCET of Java programs executed on the HVM. TetaJ is based on
a model checking approach and integrates with the UPPAAL [2] model
checking tool.

In their paper [8] the authors lay out a vision for a complete environment com-
prised by a set of tools for supporting the development and execution of hard

11

real-time safety critical embedded Java. The HVM is a candidate for a virtual
machine executing the resulting Java byte code on a variety of embedded plat-
forms. Additional to WCET analysis - which has already been implemented for
the HVM - the authors also advocate the development of tools for (1) Confor-
mance checking, (2) Exception analysis, (3) Memory analysis and (4) Schedu-
lability analysis. Using the WALA [1] and UPPAAL [2] framework the authors
have developed tools for (1), (3) and (4). As will be discussed further in Sec-
tion 9, it is an important priority to continue work with integrating these tools
with the HVM and the HVM Eclipse plugin.

Section 2 examines in more detail how embedded software engineers work
with existing legacy C environments today and from this industrial case, Sec-
tion 3 extracts a list of requirements that environments for embedded Java
should seek to ful�ll to support the incremental addition of Java software into a
C based build and execution environment. Section 4 examines current execution
environments for embedded Java and evaluate to which extent they support in-
crementality, integratability and e�ciency. This overview of the current state
of the art will show that current environments have come far in terms of e�-
ciency and have even just made the �rst advances in terms of incrementality,
but in terms of integratability there is a gap between the current state of the
art and the requirements put up in Section 3.5. To close this gap Section 5, 6
and 7 introduces the HVM. The HVM builds on the ideas of existing embedded
environments (mostly the FijiVM[50] and the KESO VM[21]) and adds a novel
set of features mainly focused on integratability.

The HVM itself incarnates a body of contributions described in 5 conference
papers, 1 journal article, and 1 extended abstract. These papers are included
as appendices to this thesis and summarized in Section 8.

1.3 Delimitation
The challenges related to using Java in existing C based build and execution
environments increase as the target platforms become smaller and smaller. Some
of the reasons are,

� As the amount of computational and memory resources decrease on smaller
and smaller devices, the requirement that Java environments are incremen-
tal and e�cient becomes more and more important

� Because of the great diversity of low-end embedded devices compared to
e.g. desktop environments, the nature of the build environments di�er a
great deal as well. The chance that the build environment used by a par-
ticular engineering company follows some commonly used standard is low.
Build environments are often non-standard and have evolved over time and
become very particular for the company in question. So integratability is
even more important for low-end embedded systems.

Figure 3 illustrates an overview of computational platforms ranging from
server platforms down to low-end embedded systems. The focus here is on low-

12

end embedded systems. In many cases the results could be applied on high-end
embedded systems as well, but it is the low-end embedded platforms that can
bene�t the most from incremental, integratable and e�cient Java environments.

Figure 3: Platforms

The industrial case introduced in the following section is a prototypical ex-
ample of a low-end embedded system: limited computational resources, non-
standard build environment and a large amount of existing C software control-
ling the execution of the embedded software functionality.

2 An Industrial Case: KT4585
This section looks more closely at the KIRK DECT Application Module [54]
from Polycom [53], also called the KT4585. This module can be used to wire-
lessly transmit voice and data using the DECT protocol. The device can be
found in a range of DECT based mobile phones and in other communication
solutions. It has the following features,

� 40 Mhz, 16 bit RISC architecture

� 8 kB RAM, 768 kB ROM

� External DSP (Digital Signal Processor) for voice encoding

� External dedicated instruction processor (DIP) for controlling a radio re-
ceiver/transmitter

� Microphone and speaker devices

13

� Low power battery driver.

The KT4585 can be programmed in C/Assembler and comes with a C based
development platform and a small non-preemptive event driven RTOS. The
RTOS is described in more detail as part of [37]. The bulk of the delivered
software implements the DECT protocol stack, but an important part controls
the DSP and DIP through low level device register access and interrupt handling.

The KT4585 is a rather complicated setup, making it a well suited case for
�nding the methods used by engineers when programming resource constrained,
real-time, control and monitor software. An overview of the KT4585 architec-
ture is illustrated in Figure 4.

Figure 4: Simpli�ed Architecture of the KT4585

2.1 RTOS
Polycom has developed a C based framework for programming the KT4585.
This framework is based on an event-driven programming model. As observed in
[26, 20], event-driven programming is a popular model for writing small embed-
ded systems. Figure 5 illustrates the scheduling model applied on the KT4585.

The OS loop retrieves an event from the head of an event queue and dis-
patches the event to its handler. The handler is implemented as a C function
and can be registered with the OS through a simple API. The events are dis-
patched in a �rst-come �rst-served order and cannot be given priorities. It is
the responsibility of the software developer to handle events in a timely fash-
ion, in order to allow other events to be handled. No tools or methods exist

14

� �

����������	

�����������

���������

��������������������

���	������������

���	����	�����

���	��

������	�

������	�

��

Figure 5: Event Driven Scheduling

to ensure that this rule is observed. A hardware watchdog timer will reset the
device if an event handler gets stuck. Events can be inserted into the queue
from other event handlers, but they can also be inserted into the queue from
inside interrupt handlers. An example of this is shown below in Section 2.4.

2.2 CPU and Memory
The KT4585 main processor is the CR16c [59] from National [58]. It is a 16 bit
RISC architecture with a 24 bit pointer size and on the KT4585 it is equipped
with 8 kB of RAM and 768 kB of ROM which are accessed using the same in-
structions (Von Neumann architecture). Program code is placed in ROM. Static
data can be read from ROM during runtime without any additional overhead.
Writing to ROM at runtime is possible but di�cult and usually avoided. This
means that all dynamic data have to be kept in RAM.

It is programmed using a GCC cross compiler ported by Dialog Semicon-
ductor [17] or the IAR C compiler from Nohau [44].

The DSP and DIP are external processors and they are programmed from
the main C application by loading arrays of machine code into proper address
spaces. The DIP controller runs a small hard real-time software program (512
words of instructions) that open and close the radio device at exactly the right
time to adhere to the DECT frame structure. Programming the DIP software is
an error prone task. As a consequence, it is seldomly changed. An assembler for
the DIP instruction set do exist, but the DIP program can also be hand coded.
The DIP program is stored in program memory as a C array of bytes. During

15

start up of the main C application, the DIP instructions are loaded from program
memory and stored in a particular memory mapped address space at which
the DIP program must be located. The DIP is continuously reprogrammed at
runtime to open or close DECT connections. Apart from the DIP program,
the DIP behavior is also controlled through a set of con�guration parameters.
These parameters are stored in EEPROM and retrieved and loaded into some
DIP control registers at start up. The parameters are needed to �ne tune the
behavior of the radio electronics, a tuning made during production for each
individual device.

The DIP issues interrupts to the main processor at various points in time to
signal the reception or transmission of data over the radio. These data are read
by the DIP and stored in a portion of RAM that is shared between the DIP and
the main processor.

Figure 6: KT4585 Memory Map

The relevant portion of the KT4585 memory map is listed in Figure 6: the
area termed Shared RAM for CR16Cplus, Gen2DSP and DIP is the only area
where both the DIP and the main processor have access. The main purpose of
this area is to hold the data bu�ers for data being received or transmitted over
the wireless link. The main program maps this area to some data structures and
reads/writes the areas through pointers to these data structures. Here follows
some simpli�ed code illustrating this,

16

typedef struct {
... BYTE CRCresult; ...

} RxStatusType;

typedef struct {
... RxStatusType RxStatus; ...

} PPBearerRxDataType;

typedef struct {
...
PPBearerTxDataType BearerTxData[NOOFBEARERS_PP/2];
PPBearerRxDataType BearerRxData[NOOFBEARERS_PP];
...

} BmcDataPPBankType;

#pragma dataseg=BMCDATARAM
extern BmcDataPPBankType BmcDataRam;
#pragma dataseg=default
...
if ((BmcDataRam.BearerRxData[0].RxStatus.CRCresult & (1 << 6)) == 0) {

restartDIP();
}
...

Now, if the BmcDataRam variable is located at the correct address in memory
(0x10000 according to Figure 6), and the DIP is programmed to place data into
memory according to the de�nitions of the types above, then the data being
received can be accessed from the main processor as is illustrated. The way in
C to force the BmcDataRam variable to be located at a particular address is to
annotate the source code at the declaration of the variable with compiler direc-
tives (the #pragma dataseg=BMCDATARAM above). The syntax of these directives
vary from compiler to compiler. Then an option is given to the linker to make it
place the segment in question at a particular address. For the IAR compiler from
Nohau the option for the above will be -Z(DATA)BMCDATARAM=10000-108ff. Al-
ternatively a linker script can be updated with this information.

The main program will also have to be able to program the DIP as illustrated
below,

unsigned char* address = (unsigned char*) 0x10001da;
*address++ = 0x01;
address++ = 0x63; / U_VINT 01 */

This code stores the U VINT 01 instruction - which makes the DIP signal an
interrupt to the CPU - at address 0x10001da in the DIP sequencer RAM area.
From the memory map in Figure 6 it is seen that this is 0x1da bytes into the
memory area used for the DIP program.

17

2.3 Device I/O
Memory mapped device registers are used to control the DIP and DSP, e.g. the
DIP is controlled through the DIP CTRL REG register which is located at address
0xFF6006 (see Figure 7)1.

Figure 7: The DIP control register

Starting the DIP after the DIP code has been loaded is accomplished in C
through code like this,

#define DIP_CTRL_REG *((volatile unsigned short*)0xFF6006)

static void restartDIP(void) {
DIP_CTRL_REG |= URST;
DIP_CTRL_REG &= ~URST;

}

In general memory mapped device registers are used to control the behavior
of all attached peripherals and electronic components that are controllable from
the CPU program.

1The data sheet for the KT4585 describing the DIP CTRL REG and other device registers are
not available for public download, so the reference to the document cannot be given here.

18

2.4 Interrupts
On the KT4585 interrupts are mostly used to facilitate the communication be-
tween the external DIP processor and the CPU. When the DIP is receiving a
frame of wireless data, these data are placed in a bu�er that is located in a
memory space that is shared between the DIP and CPU. When the last bit of
data has been received the DIP issues an interrupt to the CPU. When an inter-
rupt occurs, the current event handler or the OS loop will get interrupted and
control is automatically transferred to an interrupt handler. The synchroniza-
tion between the interrupt handler and the event dispatcher is done by disabling
interrupts during critical sections of code. Because of the frame structure of the
DECT protocol, the CPU now has 5 ms to empty the bu�er before it is overwrit-
ten by the next frame. The interrupt handler for the DIP interrupt empties the
bu�er and signals an event in the RTOS so the upper layers of the software can
handle the interrupt in a soft real-time context. A simpli�ed interrupt handler
is shown below,

__interrupt static void dipInterruptHandler(void) {

PutInterruptMail(DATAREADY);
... put data in mail ...
DeliverInterruptMail(DIPCONTROLLERTASK);

RESET_INT_PENDING_REG |= DIP_INT_PEND;
}

When an interrupt occurs, the hardware looks up the interrupt handler in
the interrupt vector. The location of the interrupt vector in memory can be
programmed through the use of special purpose instructions, and the content of
the interrupt vector - which handlers to execute in the case of interrupts - can
be set by writing a function pointer to appropriate locations in memory. Then
the handler gets called. The declaration of the above handler is annotated
with the interrupt annotation. This signals to the IAR C compiler that
the function is an interrupt handler. Such entry and exit code stubs will be
automatically generated by the compiler to save and restore the interrupted
context to the stack. On the KT4585 all interrupt handlers have to reset the
interrupt explicitly (as is done above). Failure to do so will cause the interrupt
to be reentered immediately.

2.5 C Runtime
The C runtime contains software features required during start up and execution
of the main program. A subset of these features are,

� Start up. After the boot loader has loaded the program, an entry point
de�ned by the user gets called. This is usually called start or similar.
This entry point does an absolute minimal set up of the software. On

19

the KT4585 it sets up the stack and initializes the interrupt vector table.
Then it calls main - the C entry function

� Memory management. The C runtime environment may implement the
malloc and free functions used to allocate and deallocate data

� Advanced arithmetic. If the micro controller does not natively support
multiplication or division through arithmetic machine instructions, the C
runtime may implement such functionality as ordinary functions.

The GCC and IAR C compilers come with a pre-built C runtime environment
implementing all of the above, and more. It is possible to create applications
that do not use the pre-built C runtime environment. Then the linker has to
place the code in appropriate places to ensure that the correct entry point gets
called at boot time.

2.6 Application Code
The actual software developed will consist of some abstract layers that do not
communicate directly with the hardware. E.g. the upper layers of the DECT
protocol stack are soft real-time software components that process events from
the lower layers. But it also accesses features directly from the C runtime
(arithmetic functionality and memory management) and it occasionally accesses
the hardware directly through device registers. The soft real-time part of the
software that does not access the C runtime, nor the hardware, makes up the
by far largest portion of the framework in terms of lines-of-code.

2.7 Programming Environment
The hardware outlined above is programmed using the IAR Embedded Work-
bench [45]. The software con�guration management is supported by the setup
of ’projects’ that groups and manages source code. The build procedure is auto-
matically executed by the workbench based on the source code placement in the
project structure. The IAR Embedded Workbench is a commercially available
product that has been developed over many years and support a wide range
of embedded targets. Apart from the software con�guration management, the
workbench also allows for the editing of source code, and �nally it is also a
con�guration tool, that con�gures the compiler, linker, and debugger to gener-
ate code with certain capabilities. Figure 8 shows a screen shot from the IAR
Embedded Workbench. For each category a large amount of options can be set,
that may have a signi�cant impact on how the program will eventually behave
when it is executed.

The workbench is also used to download and start the executable and to run
the debugger. All con�gurations set by the user are saved in a XML �le. For the
KT4585 an Eclipse plugin exists that can read and parse the XML con�guration
�le. Based on this the Eclipse plugin is able to invoke the GCC cross compiler
for the CR16c. The Eclipse plugin only supports a limited set of options.

20

Figure 8: Options for the IAR Compiler, Linker and Debugger

3 Requirements Analysis - The Industrial Case
This section is an analysis of the industrial case described in Section 2. The
outcome is a list of requirements that can reasonably be put on a Java execu-
tion environment for embedded systems such as the KT4585. Next Section 4
examines the current state of the art, comparing it with these requirements.

The industrial case described above will di�er in its details from other cases
on many points, because of the great diversity of embedded environments on
the market, but it is assumed that the following statements hold for a signi�cant
number of low-end embedded development environments,

1. A C/Assembler cross-compiler tool-chain, either commercial (e.g. the IAR
compiler from Nohau) or open-source (e.g. GCC), is used to produce
executables for the embedded target

2. An IDE, similar to IAR Embedded Workbench or Eclipse with proper
plugins, is used for software con�guration management and to con�gure
and call the compiler, linker and debugger

3. A standalone tool or the IDE from above is used to download the exe-
cutable to the target

21

4. A simple RTOS exists for the target. No assumptions are made regarding
what scheduling mechanism is used. Applications may also run bare bone,
directly on the hardware

5. A signi�cant amount of C code exists, possibly build on top of the RTOS
above.

6. Hardware and I/O are controlled through direct access to device registers

7. Control over placement of data in memory is required

8. Interrupt handling (1st level) is required

9. An existing C runtime supports the initial start-up of the device and may
support memory management and higher level arithmetic functionality.

Also, as stated earlier, focus here is on low-end embedded environments
were memory and computational resources are limited. This means that size
and e�ciency of generated code are of interest. From these observations and
from the industrial case, a list of features is extracted; features that the embed-
ded developer will expect to be supported in his embedded Java development
environment. The features are grouped under the following headlines,

1. Programming Environment

2. Software Integration

3. Hardware Integration

4. Performance.

3.1 Programming Environment Requirements
An existing embedded developer will be reluctant to abandon his currently used
tool-chain. In many cases the compiler, linker, and debugger he uses, is adapted
to the target in question and may even contain special purpose changes in func-
tionality made by the tool-chain vendor or developer himself. The con�guration
of the tool-chain in terms of settings of options and optimizations will also be
hard to change. The build procedure as supported by the IDE is also hard
to change. Embedded programming is notoriously di�cult, and switching to a
di�erent kind of software con�guration management and build procedure will
most likely be a task that developers will seek to avoid. The IDE itself, on the
other hand, as used for editing of source code may not be of equal importance.
The Eclipse environment with proper plugins (e.g. CDT, a C/C++ develop-
ment plugin) is in many cases just as e�cient, or even better, at manipulating
C source code as any commercially available product. Assuming the validity of
these observations a Java environment may bene�t from satisfying the following
programming environment requirements,

22

� It should be possible to compile the Java artifacts using existing, possibly
non-standard, C compiler tool-chains

� The Java artifacts must be easily integratable into an existing build envi-
ronment, the nature of which cannot be made any assumptions.

3.2 Software Integration Requirements
Only in the rare case, where a fresh software development project is started, and
it is not based on any existing software, one can avoid integrating with legacy
software. In, by far, the most common case an existing C runtime, RTOS,
and software stack are present and those software components must be able to
continue to function after introducing Java into the scenario. This leads to the
formulation of the following software integration requirements,

� It should be possible to express Java functionality as an RTOS concept
and schedule the execution of Java functionality by the RTOS scheduler

� Java functionality should not rely on any additional functionality than
what is available in the existing C runtime environment

� Java functionality should be able to exchange data with existing legacy
software components written in C.

3.3 Hardware Integration Requirements
Changing the hardware to accommodate the requirements of a new development
environment will rarely be desirable in existing engineering scenarios. In many
cases the existing hardware platform is chosen because of certain properties
such as item price, power consumption, robustness to certain physical environ-
ments, other electronic attributes (e.g. resilience towards radiation and static
discharges), physical size and integratability into an existing electronic compo-
nent. So even though an alternative hardware execution platform for Java may
exist, it is unlikely that engineers will change such an important hardware com-
ponent. Hence it follows that it is desirable to support the following hardware
integration requirements,

� The Java software components should be able to run on common o�-the-
shelf industrial hardware. This includes at least 8, 16 and 32 bit platforms

� It should be possible to access device registers and I/O from Java

� It should be possible to place Java software components in certain memory
areas speci�ed by the hardware

� It should be possible from inside Java software to handle interrupts gen-
erated by hardware

� Java software should be able to directly access memory types such as
EEPROM, FLASH and RAM.

23

3.4 Performance Requirements
When an embedded developer e.g. adds a new task written in C to a set of
existing tasks scheduled by an RTOS, he will expect to see the code size increase
corresponding to how much C code he is adding. Similarly, if he is adding a task
written in Java, he would expect to see the code-size increase almost linearly in
relation to the amount of functionality added.

If the code manipulates byte entities, he would expect to see machine in-
structions being generated that are suited for byte manipulation; on the other
hand, if the code being added manipulates long word entities (32 bit), he would
expect to see code being generated that either utilizes long word instructions or
combines byte instructions to handle the long word manipulation. On low-end
embedded hardware the data width most e�ciently supported by the machine
instruction set is usually 8 or 16 bit. 32 bit (or larger) operations are sup-
ported by combining 8 or 16 bit operations. It has a major impact on code size
end execution e�ciency how successful the compiler are in choosing the right
instructions for the right data type.

If the code being added allocates a certain amount of bytes in dynamic mem-
ory, it is expected that only this amount of bytes, perhaps plus some minimal
amount of bookkeeping space, is required. In relation to execution e�ciency
he will expect that code written in Java will run almost as e�ciently as C.
Maybe he can accept that Java runs a little slower since he knows that Java
performs some useful checks that he should have done in C (but forgot). These
observations suggest the following performance requirements,

� Linear code size increase. When adding a Java software component, code
size will grow corresponding to the functionality added

� Operation size awareness. If an operation performed by software can be
inferred as or is declared as being a byte operation, byte operation machine
instructions should be used to perform it. In general the most suited data
width should be used for performing data manipulations

� E�cient dynamic data handling. The size of Java data objects should be
close to the size of the actual data being stored. Just as close as the size
of C structs are to the size of data saved in them

� RAM/ROM awareness. A C compiler will be careful to place static data
(e.g. program code and constants) in ROM and only use RAM for truly
dynamic data. The same should hold true for Java software artifacts - code
and static data should be placed in ROM, whereas only truly dynamic Java
objects are placed in RAM

� Execution e�ciency. Performing a calculation or operation in Java should
be on par with performing the same operation in C.

24

3.5 Requirements for Embedded Java
Java, as a high-level language, o�er some interesting features that are not as
easily supported in C: the Java language is a safe language and common mis-
takes made in C, such as pointer errors, endian confusion, dangling references,
unexpected packing of structs, unclear semantics of arithmetic operations and
operators and macro confusion, to mention some important ones, all these types
of errors are impossible to make in Java. Additionally, on the host platform a
wide range of open source and e�cient set of tools exist to (1) analyze Java code
and highlight potential problems, (2) use UML for modeling, or (3) do WCET
and schedulability analysis. It will be acceptable to pay a certain price for these
features, and a limited price in terms of slightly higher space requirements or
slightly lower performance may be acceptable for non-crucial software compo-
nents. But there are some areas where it will be di�cult for the embedded
developer to compromise,

� Programming Environment Requirements. Java must be integratable into
the existing programming environment. Java artifacts (e.g. the VM) must
be compilable by existing compilers and it must be possible to add these
artifacts to an existing build procedure

� Software Integration Requirement. Java software components must be
able to run in the context of an existing RTOS and legacy C software
platform

� Hardware Integration Requirement. Java software components must be
able to access and control hardware, and must be able to live on the
current hardware platform

� Performance Requirements. Performance of Java software components
must be on par with C in terms of space requirements and execution
e�ciency.

Another way of illustrating the requirements put up for Java environments,
is that it should be possible to integrate Java into the existing build and ex-
ecution environment used by Polycom on the KT4585. Section 2.1 described
how software is scheduled on the KT4585. A natural approach to adding Java
functionality into such a scenario would be to implement a new handler in Java.
Figure 9 illustrates this.

25

� �

����
����	
���
����

�
���	�����
�
���
	����
��� ��
��
�	�����
�
��������

��������
	��

�	�	�
	���

�	�	
����	
���

Figure 9: Example Integration

A new handler written in C is registered with the RTOS. The purpose of
this handler is solely to delegate any events sent to it to the Java dispatcher.
The Java dispatcher is a static method written in Java receiving a handler ID
and an event ID. Its purpose is to look up the receiving handler (also written
in Java) and call its handle method supplying it the event ID. This process
proceeds through the following steps,

� Call setup. Let us assume for simplicity that the event value is a single
byte. In that case the single byte is placed on top of the Java stack.
Additionally, the ID of the handler is placed on the Java stack as well

� Call VM. Now the C proxy calls the Java dispatcher. It is assumed that
the dispatcher is located in a static class. Thus it is possible to call the VM
without any context on top of the Java stack apart from the handler ID and
event ID. When returning from this call, the Java software components
have handled the event in the Java realm

� Retrieve result. It may be possible for Java functionality to send back an
indication whether the event was handled successfully or not. If this is
supported, the result will be on the stack and can be popped from there.

Let us further more assume that the Java dispatcher and Java handlers are
written in pure Java code and do not call any native methods.

� In an incremental Java environment the size of the added code would
be some reasonable proportion of the functionality implemented in Java.

26

Actually, most engineers would expect the size to be of almost equal size
to what would be added, had the Java handlers been written in C

� In an integratable Java environment, if the Java dispatcher and Java han-
dlers are AOT (Ahead-of-Time) compiled into C (see Section 4.1.2), it
should be straightforward to include the generated C �les in the existing
build and build them together with other handlers written in C. It should
not require a particular build environment using a particular compiler,
nor require the linking against any further libraries or dependencies, or
the inclusion of various up until now unused header �les.

� In an e�cient Java environment the number of clock cycles required by
Java to handle the event should be of nearly the same number of clock
cycles had the Java handlers been written in C.

To be attractive to the part of industry that utilizes C for programming low-
end embedded environments, an embedded Java environment should support
the writing of a simple handler like above, compiling and integrating it into the
existing build environment, without adding any dependencies.

If this is not possible out-of-the-box, the mentioned portion of the engineer-
ing industry will be reluctant to adopt embedded Java technologies.

The following section will describe the current state-of-the-art for embedded
Java and look at to which extent the requirements laid out here are satis�ed.

27

4 Requirements Analysis - State-of-the-art
This section gives an overview of the state-of-the-art of embedded Java en-
vironments. The main purpose of the section is to describe the ways that a
language like Java can be executed, in su�cient depth to make an informed de-
cision about which ways are the most promising for low-end embedded systems.
The secondary purpose of the section is to describe a representative selection
of existing embedded environments for Java, to show that embedded Java envi-
ronments have come very far in terms of e�ciency, but there is an opportunity
for improving the current state-of-the-art when it comes to incrementality and
integratability. Once these opportunities have been identi�ed the HVM is in-
troduced in the next section to demonstrate how this gap can be closed.

4.1 Java execution styles
Executing any programming language, e.g. Pascal, SML, C, C++, Java, or
C#, can be done in multiple ways. Important execution styles are Ahead-Of-
Time (AOT) compilation (or simply compilation), Just-In-Time (JIT) compi-
lation or interpretation [18]. Hybrids exist as well, such as Dynamic-Adaptive-
Compilation (DAC), which employs all three styles in the same execution en-
vironment. Some languages are most often executed using one particular style,
e.g. C is usually compiled using an AOT compiler, and Java and C# are usu-
ally compiled using a JIT or DAC compilation strategy. The various execution
strategies applies to all languages, and choosing the right one depends on the
scenario in which the language is used. The following describes in more detail
those properties of each execution style that are important to take into account
when deciding on how to execute Java for low-end embedded devices.

4.1.1 Interpretation

In the beginning Java was interpreted, as stated in this quote [18]:

The Java virtual machine (JVM) can be implemented in software
as an instruction set simulator. The JVM dynamically interprets
each byte code into platform-speci�c machine instructions in an in-
terpreter loop.

But interpretation has been around long before the advent of Java. In-
terpretation can be traced back to 1966 and later the Pascal-P compiler from
1973 [69]. E.g. the Amsterdam Compiler KIT (ACK) [64] translates Pascal and
other supported languages into an intermediate byte code format for a simple
stack based virtual machine called EM (Encoding Machine). EM byte codes can
be interpreted by the ACK interpreter, or further compiled into object code for
a particular target. The Amsterdam Compiler KIT was used in a commercial
setting by Danish company DSE [19] in 1983-2000.

28

When utilizing interpretation for execution of Java on low-end embedded
platforms, the code size of the Java byte codes, as compared to the code size of
a similar program translated into native code, becomes important.

There seems to be some debate if stack based byte codes such as Java byte
codes requires less space than a native CISC instruction set. In [41] the authors
claim a code size reduction of 16%-38% when using byte codes similar to Java
byte codes as compared to native codes. On the other hand in [14] the authors
conduct a similar measurement for .NET and conclude that no signi�cant code
size reduction can be measured.

Byte code compression has been the focus of a large amount of scienti�c
works for many years (e.g. [13]), and it seems to be an underlying assumption
that byte codes require a signi�cantly smaller code size than native codes, but
the �nal proof of this claim remains to be seen. A natural way to prove this
claim would be to implement a convincing benchmark in hand coded C and in
Java and compare the code size of each using two similarly mature execution
environments: an AOT based execution environment for the C implementation
and a interpreter based execution environment for the Java implementation.
Recently the CDj and CDc benchmarks has appeared [36] and conducting this
experiment using those benchmarks is an obvious choice for further research.

Section 7 include measurements for a simple implementation of the quicksort
function in both Java and C that shows that the byte code version require
approx 40% less space than the version compiled into native code for a low-end
embedded RISC architecture.

In terms of execution speed it is an established fact that interpretation is
signi�cantly slower than AOT. Work in [22] estimates that interpreted VMs are
a factor of 2-10 times slower than native code compilers. This factor can become
even larger for non-optimized interpreters. The JamVM [34], which is a highly
optimized Java interpreter for high-end embedded and desktop environments,
claim to achieve average execution speeds of approximately 3 times slower than
native code compilers, but measurements presented later in Section 7 indicates
that this number is closer to 6 times slower than native code compilers.

Stated in general terms the following observations are made

1. Interpreted Java is signi�cantly slower than hand coded AOT compiled C

2. Interpreted Java requires less space than hand coded AOT compiled C

4.1.2 AOT Compilation

A well known example of an AOT compilation based execution environment is
the GCC compiler tool chain for the C programing language, �rst released by its
author Richard M. Stallman in march 1987 [68]. GCC translates C source code
into native code for a large range of platforms of many sizes and avors [27].
AOT compilation techniques are probably one of the best explored �elds within
computer science, and AOT compilers apply the following and many more types
of optimizations [3]

29

� Dead code elimination. Only those parts of the code base that may be
reached in an execution of the program are included in the executable

� Function inlining. To speed up function calling the compiler may inline a
function body at one or several call sites

� Data ow analysis. To use the most e�cient machine instructions, AOT
compilers will make a conservative estimate on the smallest data size re-
quired for a data operation

� Register allocation of actual parameters. For suitable target platforms
parameters to function calls may be placed in registers to limit memory
access at function calling

� Register allocation of data values. To avoid memory access, values are
allocated in registers.

Today C compilers make an excellent job of producing e�cient code for
low-end embedded systems, and a wide range of con�guration switches can
be applied to optimize code for e.g. size or e�ciency. GCC is open source
but several commercially available C compilers (e.g. the IAR C compiler from
Nohau [44]) exist as well, improving over the excellent performance of GCC on
certain speci�c targets.

In 1996 Per Bothner started the GCJ project [9] which is an AOT compiler
for the Java language and GCJ has been fully integrated and supported as a
GCC language since GCC version 3.0. GCJ builds on GCC and compiles Java
source code into native machine code. Compiling an object oriented language
using AOT compilation techniques goes back to Simula’67 and was further per-
fected in the Beta programming language [40]. Even though object oriented
languages contain language constructs such as virtuallity of both methods and
types, the �eld of AOT compiling object oriented languages is well understood.

Traditional AOT compilers compile the source language into assembler code
for the target platform. An alternative and interesting avor of AOT compila-
tion of Java is to compile Java byte codes into C - in e�ect using the C language
as an intermediate language. This technique has been utilized by environments
such as the JamaicaVM from aicas [4], IBM WebSphere Real-time VM [24],
PERC [43], FijiVM [50] and KESO [21]. The generated C code can then be
compiled into native code using GCC or a similar cross compiler. Using this
strategy, the FijiVM achieves execution speeds of approx. 30% slower than
that of C for the CDj benchmark. This result does not imply that Java-to-C
compiled code can in general be executed with an e�ciency loss of only 30%.
Still the CDj benchmark is a non-trivial benchmark - Section 5.3.2 shows that
it requires the compilation of approx. 600 methods - and the results reported
for the FijiVM indicates that AOT compilation of byte codes into C may be a
feasible technique for many scenarios. Comparable results for other Java-to-C
capable VMs measuring e�ciency for the CDj benchmark has not been found,
so no indication of FijiVM performance can be given on this basis. Section 7
will compare a subset of the above VMs using other benchmarks.

30

Work comparing the code size of AOT compiled Java with AOT compiled
C is lacking. Because of this lack of empirical data it is assumed that there is a
correlation between code size and performance and that the code size of AOT
compiled Java is close to the code size of AOT compiled C. This assumption is
supported by measurements presented in Section 7. These observations lead to,

1. AOT compiled Java can be almost as fast as AOT compiled C

2. The code size of AOT compiled Java is almost the same as AOT compiled
C.

4.1.3 JIT Compilation

Just-in-time compilation is a technique of spreading the compilation of a pro-
gram out over time, interleaving code compilation with code execution as stated
in the lowing quote [12]:

Unlike traditional batch compilers, our compiler is invoked on a per-
method basis when a method is �rst invoked, this technique of dy-
namic translation. . . . Our compiler generates machine code from
the byte code object, and caches the compiled code for use the next
time this method is invoked.

It follows that just as the interpreter has to be executing on the target alongside
the program being interpreted, in a similar manner the JIT compiler has to be
executing on the target interleaved with the program itself. The idea of JIT
compilation has been explored long before the advent of Java. Smalltalk and
Self environments are based on JIT compilation, and many important advances
in JIT compilation techniques were made in those environments [12, 16].

When running alongside the program, a JIT compiler can take into account
how the program is actually being executed and optimize the most used execu-
tion path. An example from the realm of object oriented languages is generating
code for virtual method dispatch. At a truly virtual call site an AOT compiler
cannot accurately infer which method is going to be called, since it can, and will
be, di�erent target methods from one call to another. A JIT compiler on the
other hand can gather statistics and discover which method is usually called,
and optimize the call to handle this scenario e�ciently. This idea is called a
Polymorphic Inline Cache and was put forward by [33] and is one example of
where JIT compilers can do better than AOT compilers.

The HP project Dynamo [7] takes a stream of AOT generated machine in-
structions and optimizes them at runtime by taking into account optimization
opportunities revealing themselves when the program is executed. Dynamo
achieves considerable speedups on most benchmarks, in some cases more than
20%.

The Dynamo project shows that even after a capable AOT compiler has gen-
erated fully optimized code, a JIT compilation strategy will be able to improve
further on performance.

31

In their paper [35] the authors conduct very detailed measurements compar-
ing a Java-to-C AOT compiler against a selection of other Java environments
(not necessarily embedded), and they �nd that for their AOT compiler imple-
mentation, Java code executes approximately 40% slower than when executed
using the best JIT compiler (HotSpot).

For Java environments supporting dynamic class loading, a JIT compilation
strategy is especially useful, since a JIT compiler is immune to dynamic code
changes in the sense that previously generated code can just be discarded and
new code generated on the y.

JIT compilers exist for high-end embedded systems as well as desktop and
server platforms. The CACAO JIT [39] is a well know example for embedded
systems, achieving impressive execution speeds for embedded Java programs
(from 1 { 1.6 times slower than C). JIT compilers tend to require a signi�cant
amount of dynamic memory, and even though the CACAO JIT can run on
systems with as little as 1MB of dynamic memory [10], on low-end embedded
systems with e.g. 4 kB of dynamic memory JIT compilation becomes imprac-
tical. This is mainly due to the fact that generated code will quickly �ll up the
limited amount of available RAM on low-end embedded devices. Thus gener-
ated code has to be stored in ash, which is di�cult, but not impossible, to do
at runtime. To conclude,

� JIT compilation can be at least as fast as AOT compilation, in some cases
faster

� JIT compilation requires extra dynamic memory as compared to e.g. in-
terpretation or AOT.

4.2 Execution Styles for Embedded Platforms
For high-end embedded systems JIT compilation is a very attractive execution
strategy. Firstly, it is e�cient. Section 7 presents detailed measurements that
substantiate the claim by the CACAO authors that Java can be executed approx
1-2 times slower than C. Secondly, it supports dynamic class loading since the
invalidation of existing code as a consequence of loading new code is simply
a matter of recompiling the code. For low-end embedded systems though, a
JIT compiler has yet to emerge that runs with as little as the few kB of RAM
that is customary on low-end embedded devices. Because of the proliferation
of low-end embedded systems, portability becomes an issue as well. The code
generator of the JIT compiler needs to be ported to every new target device
that is to be supported.

The AOT compilation strategy is very attractive for both low and high-end
embedded platforms. It too is very e�cient. Section 7 will show that some
AOT environments are even faster than claimed above and execute faster than
C on some benchmarks. AOT compilation does not require additional RAM
since code generation is done ahead of execution time on a host platform. It
may require more ROM memory compared to C. On low-end embedded systems

32

the amount of ROM is usually a lot larger than RAM, so for many scenarios
AOT compilation may be useful. Especially byte code-to-C AOT compilation
is interesting for low-end embedded devices. This way of compiling Java is very
portable. It borrows its portability from C as this language is supported on most
low-end embedded systems. So Java-to-C compilers are very portable if they do
not rely on unportable external libraries. Contrary to JIT environments, envi-
ronments supporting only AOT compilation will have a hard time supporting
dynamic class loading at runtime, which may be a signi�cant drawback in some
scenarios. But for low-end embedded devices dynamic class loading may not be
desirable, and will be hard to support, since the classes loaded will have to be
placed in ROM, and it is very di�cult and usually avoided writing to ROM at
runtime.

Interpretation uses the smallest amount of RAM and ROM of all execution
styles, but it is an order of magnitude slower than native C. In some scenarios
this may be acceptable, but in others it will not. Interpreters are just as portable
as Java-to-C AOT compilers if the interpreter is written in portable C code and
does not rely on unportable external libraries. Interpreters will be able to handle
dynamic class loading just as easy as JIT compilers, still facing the additional
challenge of how to store the loaded classes into ROM at runtime.

Until a JIT compiler appears that can run with just a few kBs of RAM,
interpretation and AOT compilation are the only options for low-end embedded
systems. Because of these reasons an environment supporting both AOT com-
pilation (for e�ciency) and interpretation (for its low memory requirements and
dynamic nature) will be an attractive architecture. The HVM, later described
in Section 5, supports such a hybrid execution style where parts (or all) of the
code can be AOT compiled for e�ciency and the rest can be interpreted in order
to save on ROM storage.

4.3 State-of-the-art Environments
A large number of environments for embedded Java exist and they utilize both
JIT, AOT and interpretation. Representative examples of embedded Java en-
vironments spanning all three execution styles are described below. With the
exception of KESO and HVM, none of these environments are able to run on
low-end embedded systems without changes. Detailed measurements of the ex-
ecution e�ciency of the example environments are presented in Section 7.

4.3.1 JamVM

The JamVM [34] is famed for being the most e�cient Java interpreter. The
size of the interpreter is approximately 200 kB ROM. It supports the full Java
speci�cation (including JNI) and has been ported to quite a number of plat-
forms. JamVM is written in C and applies a large range of optimizations. One
of these are so called labeled gotos supported by the GCC compiler. This fea-
ture allows the use of labels as values [28] and can improve the execution time
of the VM interpreter loop signi�cantly. JamVM is built using the configure,

33

make, make install GNU build style known from Linux and UNIX build en-
vironments. Most other compilers (e.g. the IAR compiler from Nohau used in
many industrial settings) do not support labeled gotos. Neither is the JamVM
build procedure supported in many low-end embedded build environments. Fi-
nally, because of the size of the JamVM executable, the JamVM is not suitable
for low-end embedded systems as is. It may be possible to port it to a partic-
ular low-end embedded target by disabling unwanted features and making an
adapted build environment for the speci�c target. It would be interesting to
attempt a port of the JamVM to the KT4585 environment described in Sec-
tion 2. If such a port would be successful, the JamVM would be an attractive
execution engine for this environment, and it would pave the way for porting it
on other low-end embedded environments as well. The JamVM uses the GNU
Classpath Java class library [29]. The size of this is approx 8 MB and in its
default con�guration the JamVM loads classes as required from this archive
during runtime. To make this work on a low-end embedded system, a tool for
generating a library archive only containing the classes used, and a facility for
loading this from ROM instead of a �le system would have to be developed.
In any case the JamVM remains the benchmark for interpreters because of its
unsurpassed e�ciency on high-end embedded and desktop systems.

4.3.2 CACAO

The CACAO JIT [39] is a free and open source implementation fully compliant
with the Java Virtual Machine Speci�cation. It supports i386, x86 64, Alpha,
ARM, MIPS 32/64, PowerPC 32/64 and S390 target platforms. It runs with
as little as approx. 1 MB of RAM memory. It uses GNU Classpath [29] or
OpenJDK [46] as Java runtime library. It runs naturally in a Linux-like OS
environment with su�cient packages installed to build the JIT itself and the
class library of choice. While a selection of features of the CACAO JIT can be
disabled to reduce memory requirements, it is not designed for low-end embed-
ded systems such as the KT4585 described in Section 2, and it is not obvious
that it would be possible to build the CACAO JIT and required libraries for
that target. Additionally a port of the code generation engine for the CR16c
RISC architecture would be required. The main issue though, with JIT compil-
ers in general for low-end embedded systems, is the runtime dynamic memory
requirements.

4.3.3 GCJ

GCJ is an AOT compiler that translates Java byte codes, as they appear inside
the class �le, into native code for a particular target. GCJ is built on GCC
and building Java programs is done in a very similar manner as when building
C programs. Figure 10 illustrates the build architecture. First the Java source
code is compiled into class �le format. Then the GCJ compiler is used to
generate native code. Since GCC supports cross compilation for a very large
range of embedded targets and since GCJ builds on GCC, Java programs can

34

be cross compiled into native code for many di�erent targets. In short, GCJ
reuses or builds on the portability already present in GCC.

Figure 10: GCJ architecture

Still GCJ programs cannot directly run in a low-end embedded environment
such as the KT4585 described in Section 2. The reason is that GCJ requires the
library libgcj and this library is intended to be a complete J2SE implementa-
tion based on GNU Classpath making it too big for low-end embedded devices
(several MBs). To solve this issue the micro-libgcj [30] project started, but
has since been discontinued. The GCJ compiler itself (excluding the runtime
environment) builds readily for low-end embedded targets. To make GCJ avail-
able - including the runtime environment - on low-end embedded devices an
incremental version of libgcj with the same footprint as libgcc would be really
attractive. Such a version does not exist and it is not currently possible to
produce su�ciently small executables using GCJ to allow them to run on low-
end embedded systems such as the KT4585. Additionally to compiling Java
directly into native code, the GCJ runtime environment features an embedded
interpreter. Thus GCJ supports a hybrid execution environment featuring both
interpretation and static compilation. GCJ is based on some very interesting
design principles (1) GCJs extreme portability (inherited from GCC) allows it
to run all targets where GCC is supported and (2) GCJ supports a hybrid ex-
ecution style of both AOT compilation and interpretation. The last challenge
remaining before GCJ can really be applied to low-end embedded devices is to
get rid of its dependency to the monolithic libgcj runtime library.

4.3.4 FijiVM

The FijiVM [50] is a AOT compiler that translates Java byte codes into C. This
is a di�erent strategy than GCJ which translates straight into native code. The
generated C code then has to undergo an extra step of compilation from C into
native code for the target in question. In practice this strategy gives a very high

35

degree of portability since C compilers most likely exist for any given embedded
target. It o�ers a higher degree of exibility, as opposed to the strategy chosen
by GCJ, since the choice of which C compiler to use can be made by the user.
In the case of FijiVM however, GCC is the preferred compiler, but it should
be possible, perhaps with some changes, to use other compilers than GCC. The
architecture is depicted in Figure 11.

Figure 11: FijiVM architecture

It is tempting to think that using C as an intermediate stage before gener-
ating native code might incur some overhead or might make it di�cult to per-
form certain types of optimizations applicable to the actual target. In practice
though, FijiVM proves by example that the outcome of the entire compilation
process can be very e�cient native code. Section 7 shows that FijiVM outper-
forms all other execution strategies (including JIT) and on average produces
the best code for all examined execution platforms. The declared contribution
by the FijiVM is its real-time capabilities and the FijiVM includes a real-time
garbage collector [49] and e�cient support for threading and locking. The e�-
ciency of the generated C code is another important contribution and measure-
ments show that, on benchmarks presented in Section 7, the FijiVM is the most
e�cient Java execution environment for embedded systems.

The target platforms for the FijiVM are high-end embedded systems, and
a 32 or 64 bit POSIX compliant OS is required. In their default con�guration
FijiVM executables are linked against libgcc, librt and libpthread and they
require approx. 600 kB RAM and 1 MB of ROM. In their work [50] the authors
state that the Fiji runtime is approx. 200 kB which must be the lower bound
for ROM requirements of FijiVM executables. The FijiVM was not designed
for low-end embedded systems, but there is no reason why the code-generation
part of Fiji cannot be used to generate very e�cient code for low-end embedded

36

targets. An interesting and very useful option for research would be to separate
the FijiVM code generation module from the rest of the infrastructure and use
this for generating standalone, non-monolithic, e�cient executables for low-end
embedded targets.

4.3.5 KESO

The KESO JVM [21] is an AOT Java-to-C compiler with the same overall
architecture as FijiVM described in Section 4.3.4. While KESO does include a
garbage collector, neither the GC nor the environment as such have a claimed
real-time behavior as is the case with the FijiVM. The main contribution of
KESO is its ability to run on low-end embedded environments such as the
KT4585, an ability no other Java environments o�er (apart from the HVM
introduced later in Section 5). The KESO AOT compiler applies a number of
optimization techniques to achieve very e�cient execution speeds - almost as
e�cient as hand coded C. KESO is the �rst JVM for low-end embedded systems
that supports incrementality for Java applications: you only \pay" for what
you use. The price to pay for this incrementality is the lack of dynamic class
loading and the lack of full Java support, as only a limited Java JDK - speci�c
to KESO (the KESO core libraries) - is available to the programmer. Additional
contributions of KESO are the concepts of isolated execution domains and its
use of the OSEK/VDX operating system [31] - a well known RTOS used mostly
in the automotive industry.

KESO comes very far in meeting the goals as it is both incremental and
e�cient. By adding just a few more features to support integratability, the
KESO JVM would be a very interesting candidate for use on environments such
as the KT4585.

4.3.6 JamaicaVM

The JamaicaVM from aicas [4] is a commercially available Java VM for real-
time Java systems development2. The focus of the JamaicaVM is to ensure hard
real-time execution guarantees, including real-time GC [61], while maintaining
completeness and e�ciency. The JamaicaVM supports interpretation as well
as selective compilation of classes directly into C. Development is supported in
Eclipse through the Jamaica Eclipse Plug-in. It also supports ’Smart Linking’.
This is a technique based on �rst completing an initial run of the application
during which pro�le information is extracted. This pro�le information can be
used to select which methods should be compiled and which methods should
be interpreted. Also it can help to remove unused code and data from the
executable. Since compiled code takes up more program memory space than
interpreted code, the JamaicaVM tools help to con�gure the application in such
a way that a good performance is achieved but at a reasonable cost in terms of

2More information about the JamaicaVM can be found in the user manual which is available
for download from their website after registration

37

executable size. The programmer can explicitly force the JamaicaVM to always
compile selected methods.

Apart from the builder and execution engine itself, a range of analysis tools
exists as well: The JamaicaVM ThreadMonitor to monitor the real-time behav-
ior of applications, and VeriFlux: a static analysis tool to prove the absence of
potential faults such as null pointer exceptions or deadlocks. The target plat-
forms supported by the JamaicaVM are in the realm of high-end platforms.
The VM itself occupies approximately 1 MB of ROM. Applications are linked
against the OpenJDK Java class libraries. RAM requirements are in the range
of a few MBs and upwards depending on the application.

4.4 Opportunities for Embedded Java
Section 3.5 described a simple scenario in which a single task is written in
Java and integrated with an existing build and execution environment (the
KT4585 described in Section 2). This section examines to which extent the
environments listed above support this scenario. This identi�es the gap between
what the current state-of-the-art o�ers and what embedded software engineers
accustomed to working in a C based programing environment expect.

� JamVM. Requires the addition of the source of the JamVM itself which is
built using a build environment di�erent than the one used by the KT4585
developers. Also the size of the VM (200 kB) is impractical

� CACAO. Requires the addition of the JIT itself which has further de-
pendencies to POSIX and other libraries. The size of the JIT and other
requirements makes it non incremental and impractical to include in the
KT4585 build end execution environment

� GCJ. Requires the linking against libgcj which is too large for low-end
embedded systems. Even if it was not, most embedded engineers would
not like to add additional libraries they did not implement themselves or
know in detail

� FijiVM. Requires a POSIX-like OS (uses librt, libpthread and others)

� KESO. Includes additional OSEK header �les. However, the core part
of the C code produced by KESO from the Java source does not rely on
OSEK, so this dependency is mostly arti�cial. KESO does a very good
job at only translating code that is actually run. KESO is incremental
and does not even require libc in most cases. Currently KESO generates
C code into a variable set of �les with variable names. This makes it hard
to include these �les into an existing build environment, but the core part
of the C �les generated is standard ANSI C and could be compiled by any
compiler. In short it should be possible without too much work to make
a version of KESO that could support the above integration scenario

38

� JamaicaVM. The target platforms of the JamaicaVM are in the range
of high-end systems, but the completeness and tool support of the Ja-
maicaVM is far better than the non-commercial versions. It would be very
interesting to explore further if a completely compiled Jamaica applica-
tion, built using ’smart linking’, can be linked to an executable without
including the interpreter, and if this will bring the size of the applica-
tion down into the range of low-end embedded systems. ’Smart linking’
is based on an initial pro�ling run of the application and how to do this
on low-end embedded systems is a challange. An interesting idea to ex-
plore is to execute the pro�le run of the application on a host system in a
simulated environment.

� Others. All other JVMs have requirements that make them non integrat-
able and non incremental. The most common cause is the requirement of
a POSIX like execution environment and the insistence on being fully Java
compliant which as a result requires the linking against a large number of
external libraries.

Section 7 will show that embedded Java can be almost as e�cient as C, both
in terms of speed and code size. But an important opportunity for embedded
Java is to acknowledge the nature of existing C based environments and enable
the easy integration of Java into such environments. In other words, to be able to
support the scenario described in Section 3.5 out-of-the-box while maintaining
e�ciency. To show that this is possible, the HVM has been implemented. The
HVM is similar to KESO but makes it possible to support easy integration with
existing C based execution environments. The remaining part of the thesis will
describe the use, design and implementation of the HVM and measure some key
performance indicators of the environment and compare these to C and other
existing embedded Java environments.

39

5 The HVM - Design
The HVM is a Java execution environment for low-end embedded devices, such
as the KT4585. It is the platform for and outcome of the experimental work
done during this thesis. Work was begun in the autumn of 2010. The main
goal of the HVM project is to be able to support the integration scenario from
Section 3.5 on the KT4585.

Before describing the design and methods used in the implementation of the
HVM, the outcome of the requirements analysis of Section 3.5 is translated into
these measurable design goals for the HVM,

1. It must be able to execute with a few kBs of RAM and less than 256 kB
ROM

2. It must be integratable with the KT4585 build and execution environment,
i.e. it must be compilable together with existing C source for the KT4585
and it must be possible to schedule Java code alongside existing C code
using the KT4585 RTOS

3. Java code should execute nearly as e�ciently as C

4. It should be possible to control hardware directly from Java

5. It should be possible to handle 1st level interrupts in Java

6. It should be possible to use any Java API, and not tie Java into some
particular API

7. Java code should be able to easily read and write data in the C layer

8. It should be easy and straightforward to program Java for the KT4585
and translate it into a format suitable for compilation and download.

The following Section 5.1 will give a brief demonstration of how the HVM is
used seen from a programmers perspective. After this use scenario, Section 5.2
describes the methods used in the implementation of the HVM to achieve the
design goals.

5.1 HVM Demonstration
The example code in Figure 12 is used below to give a demonstration of how
the HVM works from the programmers perspective.
This small program inserts 5 words into an ArrayList, sorts them and then
checks that they are sorted. If the test method returns true, an error occurred.
The HVM is able to compile this test program into C code and eventually run
it successfully on the KT4585 platform or even smaller (8 bit) platforms. The
HVM build environment is implemented in Java as an Eclipse plugin, and the
user experience is best if Eclipse is used. Eclipse is a very common IDE for
Java and other kinds of software development. The HVM build environment

40

package test.icecapvm.minitests;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;

import devices.Console;

public class TestArrayList {

public static void main(String[] args) {
boolean failed = test(args);
if (failed)

}

public static boolean test(String[] args) {
ArrayList<String> list = new ArrayList<String>();

list.add("hello");
list.add("to");
list.add("you");
list.add("Stephan");
list.add("Korsholm");

Object[] array = list.toArray();
Arrays.sort(array);

list = new ArrayList<String>();
for (int i = 0; i < array.length; i++) {

list.add((String) array[i]);
}

if (array.length == 5) {
Iterator<String> sortedNames = list.iterator();
String previous = null;
String next;
while (sortedNames.hasNext()) {

next = sortedNames.next();
if (previous != null) {

if (previous.compareTo(next) > 0) {
return true;

}
}
Console.println(next);
previous = next;

}
return false;

}
return true;

}
}

Figure 12: HVM Example

can also be executed from the command line without the use of Eclipse. To
compile and run it using Eclipse, the user must make a new standard Java
project. It is not required to make a special kind of ’embedded’ Java project -
a standard Java project is su�cient. This will most likely add a dependency to
the JDK currently applied by the user, this could be the standard JDK from
SUN, OpenJDK, GNU Classpath or some other vendor speci�c JDK. All that
the HVM requires for the above to work is that the java.util.ArrayList and
other classes used in the above program are available. Figure 13 illustrates how
the user can activate the HVM build environment to compile the above program.

41

Figure 13: Use Scenario

By right clicking on the main method of the program the user can activate
the HVM builder from a popup menu. The result will be that the Java program
is translated in to a C program which is placed in an output folder chosen by the
user. This C code is written in strict ANSI C and is completely self contained,
making it possible for the user to include in any existing build environment he
may be using for his particular embedded platform. How exactly the code will
eventually get called and executed is the topic of a later Section.

After the Java-to-C code generation has been completed the next step for
the user is to activate his usual C build environment for his embedded target,
and eventually download the resulting application to the target.

This cycle of (1) Editing Java code, (2) Activating the HVM Java-to-C
translation, (3) Activate native build environment and �nally (4) Download
and run application on target, will now be the everyday software development
cycle of the user.

In many cases Eclipse will also be the preferred development environment
for developing C code for the target - this is in fact the case for some Polycom
developers working with the KT4585 - in which case all source code, both Java
and C, will be available to the user in the same IDE.

An important part of the Eclipse integration is the view, entitled Icecap
tools dependency extent. Figure 14 zooms in on this view and shows parts of all
dependencies of the example application listed in Figure 12.

42

Figure 14: Browsing dependencies

The view lists that a total of 36 classes have been translated into C. Not
all methods available in the source of these classes are translated, but only
those that may be used by the application. In the above example the class
java.lang.AbstractStringBuilder has been expanded to show the 4 methods
that are included in the set of dependencies. Also visible in the view is the
output folder where the generated C source is placed. All methods under
AbstractStringBuilder are marked with the blue color. This indicates that
the programmer has marked these methods for compilation (\Toggle Compila-
tion"). Unmarked methods will be interpreted.

5.2 Methods
This section describes the most important methods used to meet the design goals
for the HVM. The main part of the HVM is the Java-to-C compiler and this is
also the part containing the most complexity and functionality. In summation
most methods presented below are standard methods from within the realm of
compiler construction and program analysis.

5.2.1 Intelligent Class Linking

One of the most important features of the HVM is its ability to �nd the depen-
dencies of a given application and thus perform the act of program specialization
and optimize used libraries and pro�les for a given application.

To perform this analysis the HVM makes one major simpli�cation which is
to preclude the use of dynamic class loading. In other words the HVM is only
able to handle statically con�gured applications that does not rely on dynamic

43

class loading. This restriction of normal Java functionality is also made by the
KESO and FijiVM environments.

Starting from the main entry point of the program, the HVM build envi-
ronment performs a static whole program analysis and calculates a conservative
estimate of all classes and methods that may be entered at runtime. This set of
classes and methods called the dependency extent. Calculating a safe but good
approximation to the dependency extent allows the HVM to keep the size of the
resulting application down so that the 1st primary requirement is ful�lled.

The dependency extent of the example program in Figure 12 is comprised
of 36 classes and 90 methods. Apart from the test method itself, programmed
by the user, the rest of the methods in the dependency extent originates from
the Java JDK, e.g. the used methods in java.util.ArrayList and from the
Arrays.sort method and its dependencies. To calculate the dependency extent,
the HVM build tools scans the byte code starting from the main entry point
and follows all possible paths from there. Two interesting cases highlight how
this works (1) a standard control ow branch case, illustrated in Figure 15 and
(2) a method call control ow case, illustrated in Figure 16.

if (condition)
{

if-part....
} else {

else-part
}

Figure 15: If branch

When an if-branch is encountered, the analysis proceeds through both the condi-
tion (which might be an elaborate expression), through the if-part and through
the else-part. All code encountered by following these 3 possible ows through
the program is added to the dependency extent. A careful static value analysis
to determine if both the if-part and the else-part can indeed be entered at run
time is not performed currently by the HVM tools. This method is straight
forward and clearly a safe conservative estimate of the dependency extent stem-
ming from if-branches.

A a = getA();
a.foo();

Figure 16: Invoke branch

Opposed to the ow of control inherent in if-statements as above, predicting the
ow of control for a method invocation is not straight forward. The reason is
because of the virtuallity of method invocations in Java. In Figure 16 it is not
statically possible to determine which foo-method gets called, and thus where
the ow of control might proceed. The reason is that the method foo is a virtual

44

method and may be implemented in several subclasses of A and it is unknown
from just looking at the call site what the runtime type of the object a may be.
The method the HVM applies to solve this problem is to keep track of which
possible subclasses of A may have been instantiated up until the call of foo. If
it is possible to know which subclasses of A may have been instantiated earlier,
the possible set of methods that may get called at this call site is known and
analysis can proceed by adding all of them to the dependency extent and visit
them recursively. It is crucial now to observe that following these new paths
might lead us to discover that new subclasses of A could be instantiated. In that
case, and if the ow of control ever returned to the above call site, the analysis
for that call site must be done again. This may in turn lead to even more
subclasses of A being added to the dependency extent. The HVM dependency
analysis marks for each virtual call site the list of classes that may have been
instantiated prior to execution of the call site. If analysis reencounters the same
call site, the current list of instantiated classes is compared to the list in e�ect
at the last visit to this call site. If the lists are equal the analysis terminates, if
new classes have been added the analysis is redone.

Following this method the analysis arrives at a conservative estimate of the
possible targets of the virtual call. This method will indeed terminate because
of the following arguments: The set of classes in the dependency extent is not
in�nite. Each time the analysis arrives at the call site it will either have added
at least one class to the list of instantiated classes or no new classes has been
added. If no new classes have been added, the analysis is done and the analysis
of this call site terminates. If one or more new classes have been added the
analysis is repeated, but new classes cannot be added inde�nitely since the set
of possible classes to instantiate is not in�nite.

The method described here is an incarnation of the Abstract Interpretation
method described in e.g. [42] chapter 1.5. For each virtual call site the set of
traces is collected. This is intuitively the ways that program ow may reach the
call site. For each of the collected traces there will be a �nite number of classes
that may have been instantiated. The total number of all classes instantiated
along all possible traces is the set of possible types for a in the example from
Figure 16. Static type inference of method calls for object-oriented languages is
a well known �eld and described in e.g. [51]. The method can also be viewed as
an instance of the k-CFA algorithm as described in [60]. The way the control
ow at virtual method call sites is handled, is actually what is called a variable-
type analysis introduced by [62].

Even though the above method is correct in producing a safe conservative
estimate and also terminates it may not be a practical method. The time com-
plexity for k-CFA is EXPTIME [67], but in practice it is possible to calculate
the dependency extent of large non-trivial programs, which the above exam-
ple in Figure 12 also indicates. Even so, when utilizing library code like e.g.
java.util.ArrayList the developer commonly encounters dependency leaks.
As an example consider the Java HelloWorld program from Figure 17.
Analyzing this program using the method applied by the HVM will result in
a dependency leak. The reason is that use of the System class involves the

45

class HelloWorld {
public static void main(String[] args)
{

System.out.println("HelloWorld!");
}

}

Figure 17: HelloWorld Dependency Leak

analysis of the class initializers in class System, and using the standard JDK
from Sun or any of the other vendors this in turn requires the initialization of
’the rest of the world’ to put it in popular terms. The HVM tools will actually
run and attempt to collect the dependency extent, but will eventually give up.
For the Java JDK 1.6 the java.util.* does not leak and can be successfully
analyzed by the HVM tools.

In a low-end embedded scenario, such as the KT4585, dependency leaks are
not an issue. If it were possible to calculate the dependency extent of the System
class it would be of such a magnitude that compiling it for a low-end embedded
target would be impractical.

5.2.2 Self-contained Source Code Generation

Another important feature of the HVM is its independence of external libraries.
This is crucial to keeping the size of the application down to a level were it
can be deployed on low-end embedded devices, and it is crucial for supporting
integration into an existing build environment.

An example of were dependencies may seep into the HVM is in the handling
of the long arithmetic. The long data type may not be implemented in the C
runtime for e.g. 8 or 16 bit architectures - e.g. the IAR compiler runtime for the
KT4585 does not support long arithmetic. To get around this problem the HVM
implements long arithmetic internally to support the long byte codes. The
float and double data types exhibit the same problem, but internal support
for these data types have not been added yet. So for float and double a
compromise has been made and these data types are only supported if they are
supported by the underlying C runtime.

In most cases the code produced by the HVM can be compiled and linked
without the presence of a C runtime library (-nostdlib). If the C programmer
is using float and double already these will be supported by his existing C
runtime and he will also be able to use them in Java space. The embedded
interpreter, also part of the HVM, has this property as well: no linking against
other libraries are required.

Java exceptions are supported and implemented internally in the HVM. It
would be tempting to use the setjmp and longjmp functionality available in
some C runtimes but this has not been done as it would go against the prin-
ciple of not adding dependencies that may not be supported by a given build
environment. Exceptions can be thrown and caught in both AOT compiled and

46

interpreted code and ow across the boundaries of these execution types. The
cost for full support of Java exceptions is approx 25% in terms of execution time.
This is a signi�cant cost, and for that reason it would be desireable to allow
the developer to selectively exclude exception support from the HVM. On some
low-end embedded systems, e.g. where all I/O is handled through hardware
objects and 1st level interrupt handlers, the occurence of an exception may be a
fatal error from which there is no graceful recovery. Excluding exceptions from
released code, in such scenarios, while maintaining them during development
for debugging purposes might be a desirable feature. Still, the HVM supports
exceptions, and they can be used in scenarios where they are desired.

The HVM does not use malloc or free. Instead all data are allocated
statically, including the Java heap. Dynamic data, both Java data originating
from using the new keyword, and runtime allocations made by the HVM internals
- required in some special cases - are allocated in the heap.

These are some examples of how the design principle of not including any
external dependencies has been followed in the HVM. As a result the C code pro-
duced by the HVM can be further compiled by any cross compiler and included
in all build environments. Not adding any dependencies is perhaps the most
important attribute of the HVM when it comes to supporting integratability.

In short, if the HVM is able to calculate the dependency extent of a given
application, there is a very good chance that the source code can be compiled
into an application su�ciently small to deploy to a target such as the KT4585.

5.2.3 ROM/RAM aware

To reduce the RAM requirement to a minimum, the HVM is careful to place
static data in ROM. As a result the only data placed in RAM is static class
variables and the heap. The size of the heap can be con�gured at compile time.
If no data is allocated during a program run, then no heap is required. Still
a small amount of RAM is needed for the Java stack and some internal HVM
bookkeeping.

Java objects are packed according to their �eld variables. Additionally to
actual object content, the HVM adds a 16 bit hidden �eld to allocated objects.
10 bits of this �eld is a reference to the type (class) of the object, the remaining
6 bits are reserved for future use. As a result the HVM does not support the
use of more that 1024 classes in any given application.

5.2.4 Hybrid Execution Style

The HVM includes an embedded interpreter, and the software developer can
inside Eclipse mark which methods should be interpreted and which methods
should be compiled into C. As mentioned in Section 4.1.1 there is some debate if
the space required to store byte codes is less than space required to store natively
generated code, in the general case. In the case of the HVM, byte codes take up
approximately 50% less space than AOT generated code. For this reason the
option to execute selected methods using interpretation has been added. The

47

developer can select a limited amount of methods for AOT compilation and keep
the rest as interpreted. This way ROM space requirements can be reduced.

The interpreter is dynamically adapted to which byte codes are actually
being marked for interpretation. This means that interpreter functionality for
byte codes that are not used, is not included in the application. In many cases
only a limited subset of all byte codes are used, so this feature can potentially
save a signi�cant amount of ROM space. E.g. many programs for low-end
embedded devices does not utilize the long data type - for such programs those
parts of the HVM that implements long arithmetic are not included in the
executable.

The way to achieve this selective exclusion of unused functionality is for the
static analyzer to record which byte codes are part of the dependency extent
and which of those have been marked for interpretation. This knowledge is
expressed as a set of compiler ags that are either de�ned or not de�ned, e.g.
the following excerpt from the HVM interpreter illustrates this,

#if defined(LMUL_OPCODE_USED)
case LMUL_OPCODE: {

unsigned char topInc = handleLMUL(sp, code);
sp -= 4;
if (topInc == 0) {

initializeException(sp,
JAVA_LANG_ARITHMETICEXCEPTION,
JAVA_LANG_ARITHMETICEXCEPTION_INIT_);

sp++;
code = ATHROW_OPCODE;
break;

}
sp += topInc;
method_code++;

}
continue;
#endif

Whether or not the ag LMUL OPCODE USED is de�ned, is stored in an auto gen-
erated �le produced by the HVM dependency analyzer. Additionally the same
selective exclusion of the handleLMUL function is in e�ect.

The methods described up until now all contribute to the HVM adhering to
the 1st primary requirement. Now follows a describtion of which methods are
applied to support integratability.

5.2.5 Easy Activation

The HVM main entry point can be called directly from existing C code:

initVM();
excep =
enterMethodInterpreter(&methods[mainMethodIndex], mainMethodJavaStack);

48

The function initVM is part of the HVM infrastructure and must be called just
once before control ow enters Java space. The function enterMethodInterpreter
activates Java code. In the above scenario the main method of the Java code will
be called. The enterMethodInterpreter function will determine if the method
being activated is AOT compiled or interpreted and start execution accordingly.
The methods array and the mainMethodIndex variable is auto generated by the
HVM. The mainMethodJavaStack has to be allocated by the user and supplied
as the stack to use for Java code. This allows existing C code to call the HVM
in an easy way at any time and it is e.g. utilized to support the addition of
Java event handlers to a legacy RTOS and to handle 1st level interrupts, both
of which are described in Section 7 below. The absence of new dependencies
and the ability to enter Java space easily from existing C code makes it straight-
forward to compile a simple piece of Java code and include it in an existing C
based application.

5.2.6 Code e�ciency

The e�ciency by which the AOT generated C code can be executed hinges on
a range of optimizations performed by the HVM AOT compiler. The following
section highlights three of the most important optimizations made in the HVM:
stack to variable allocation, producer-consumer analysis and devirtualization.

The JVM is stack based, which means that all values, both method param-
eters, method local variables and intermediate values are kept on the stack. A
straight forward implementation of the individual byte codes will give rise to
frequent stack access to push and pop values from the stack. This memory
access to simulate the stack as it evolves is resource consuming, thus most JVM
implementations seek to simulate stack behavior in some other manner than
actually accessing the stack. The HVM attacks this challenge by mapping each
stack cell to a C variable. Rather than reading from/writing to the actual stack
cell in memory, the HVM AOT compiler generates C code that caches each
stack cell in a C variable. For short stack sizes the resulting code is of a nature
where the C compiler can store the variables in registers, thus avoiding costly
memory accesses. Still, for stacks su�ciently large where most stack cells are
accessed within a short span of code the C compiler will have to use the C stack
for variables as it runs out registers. To illustrate this technique the following
is an example of a simple sequence of byte codes performing an addition,

ICONST_1
ISTORE_0
ICONST_2
ISTORE_1
ILOAD_0
ILOAD_1
IADD
ISTORE_0

These byte codes access two local variables and two stack cells. In the HVM
both local variables and stack cells used for computation are kept on the same

49

stack. Just before the execution of the IADD opcode the stack will look like
depicted in Figure 18.

Figure 18: Stack example

By mapping each stack cell to a local variable, the HVM will generate the
following code for the above byte code sequence:

LV2 = 1;
LV0 = LV2;
LV2 = 2;
LV1 = LV2;
LV2 = LV0;
LV3 = LV1;
LV3 = LV2 + LV3;
LV0 = LV3;

First, even though the JVM is a stack based architecture no stack access takes
place in the above. This is very important for e�ciency, since memory access
is very expensive and requires a long sequence of native instructions, especially
on 8 and 16 bit architectures. Secondly it seems ine�cient to use so many
variables for such a simple calculation, but fortunately the C compiler that
eventually translates this into machine code will be able to optimize this into a
very e�cient format.

An alternative way to avoid the frequent stack access inherent in a stack
based VM like the JVM is to translate the Java byte code into SSA format
(Static Single Assignment) format [15]. This is done by the SOOT frame-
work [66]. The code generated by the HVM is not in pure SSA format, but
it is a sequence of assignments and simple calculations that do not access the
Java stack directly. The HVM then leaves the optimization of the resulting
statements to the C compiler - an optimization which all C compilers do well,
and which e.g. GCC has evolved to perfection over many years of optimization.

How the stack cells should be allocated to C variables is decided by a method
local static analysis of the byte code. At joining paths the stack-to-variable
mapping is merged in cases where this is possible, or in some cases ushed to
the actual stack if no simple merge can be done. If a joining path has a very
di�erent mapping than the joined path, it may be required to ush some or all
cached variables to the actual stack and reload them according to the path into

50

which execution is joined. The way this is handled in the HVM is ad hoc and
can most likely be improved.

At entry into an exception handler the stack-to-variable mapping is com-
pletely ushed. This may make jumps to exception handlers ine�ective.

5.2.7 Code e�ciency - Producer-Consumer Analysis

Mapping stack cells to C variables as above lowers the number of stack access
during method execution. Still the question remains which data types to use
for the C variables. The Java stack is 32 bit wide, but in many cases it is
possible to infer a more narrow data type, e.g. short or byte for a given stack
cell. Performing this optimization is crucial for 8 or 16 bit architectures, since
32 bit data manipulation requires a large amount of instructions on a 16 bit
architecture, and even larger amount on a 8 bit architecture. The better one
can choose the proper data type for a data manipulation the smaller the resulting
code will be (saving on ROM) and the more e�cient the resulting application
will be able to execute.

When accessing local variables and formal parameters it is straight forward
to narrow the type according to the declared type of the variables. When
loading actual parameters for method calls the same method can be applied:
when loading a value onto the stack that is going to be passed to a method, the
proper data type can be found by looking at the signature of the method.

These observations have given rise to an analysis performed by the HVM that
termed Producer-Consumer Analysis. The purpose of the analysis is for each
byte code to infer the most appropriate data types for stack cells manipulated
by the byte code. Consider the �nal ISTORE 0 byte code from the example in
Section 5.2.6. This byte code is storing the result into local variable number 0.
If the size of the local variable 0 is known to be 1 byte, then it is not necessarry
to store all 4 bytes into LV0. Also there is no need to perform a full 32 bit
addition when implementing the IADD functionality.

The following description of the details of producer-consumer analysis is
based on these observations,

1. Java byte codes are either producing stack cells (e.g. ICONST 0), consum-
ing stack cells (e.g. ISTORE 0), both consuming and producing stack cells
(e.g. IADD), or not producing nor consuming stack cells (e.g. GOTO)

2. No matter along which program trace execution arrives at a byte code,
the height of the Java stack is always the same.

3. A stack cell may have been produced by many byte codes, but it is only
going to be consumed by one byte code.

Observation (1) above is obvious by looking at the Java spec for all byte codes.
Observation (2) is a structural constraint on JVM code as de�ned by the JVM
speci�cation. Observation (3) is not obvious, but the HVM has so far not
come across programs where this is not the case. Should it turn out that (3)

51

does not hold, it is possible with limited e�ort to support it in the producer-
consumer analysis. The reason for it not being supported is purely practical: no
benchmark or program has exhibited this behavior so far. Producer-consumer
analysis as implemented in the HVM is a method local analysis and is not
carried over across method invocations. For each byte code it calculates all
possible traces that lead up to the execution of the byte code. Along each trace
it collects all byte codes that may have produced the stack cell(s) on the stack
before executing the byte code. The set of traces are calculated using a form of
abstract interpretation in the same manner as calculating the dependency extent
described in Section 5.2.1, but in this incarnation the handling of method calls
is simple, since traces are not calculated across method call boundaries.

The result of the producer-consumer analysis is that each byte code is anno-
tated with a data structure describing all producers and consumers of all stack
cells present on the stack before execution of this byte code. This information
is used by the Java-to-C compiler to use the most narrow data type for all data
manipulation.

If the Java software developer uses appropriate data types like byte and
short whereever possible it will have a signi�cant impact on code size and
e�ciency on 8 and 16 bit architectures. On 32 bit architectures the e�ect will
not be as signi�cant.

Producer-consumer analysis is not a constant propagation analysis. In the
simple example from Section 5.2.6, producer-consumer analysis will be able to
allow us to use the byte data type for storing the result of the addition into
local variable 0 only if it can see that the data type of LV0 is byte. A constant
propagation analysis would furthermore be able to gain knowledge of the data
range of values from looking at actual values placed on the stack. The HVM
does not use constant propagation analysis.

5.2.8 Code e�ciency - Devirtualization

A useful side e�ect from calculating the dependency extent as described in Sec-
tion 5.2.1 is that for each method call site a list of possible classes implementing
the callee is calculated. A special case is, if this list contains one member only.
In that case the method call is not really virtual but can be substituted for a di-
rect call. This will allow the Java-to-C compiler to generate a call directly to the
C function generated from the callee. This type of call is signi�cantly more e�-
cient than going through a virtual dispatch table, and additionally it will allow
the C compiler to perform inlining of the call. In the HVM the invokevirtual
Java byte code is substituted for the invokespecial Java byte code at call
sites that are deemed non-virtual. This will in turn make the Java-to-C com-
piler generate a direct method call when translating the invokespecial byte
code.

The e�ects of devirtualization have been thoroughly examined in [21] and
[35].

52

5.2.9 Code e�ciency - Other Optimizations

The HVM applies a number of other standard optimizations,

� Null pointer checks. Checks for pointers being null can be avoided if it can
be statically determined that the pointer cannot be null. E.g. the this
pointer in non-static methods cannot be null, as this would have caused a
null pointer exception when the method was called

� Parameter passing. Non-virtual methods are translated into C functions
and formal parameters for the method are translated into correspond-
ing formal parameters for the C function. When calling an interpreted
method from a compiled method, this cannot be done. Instead the actual
parameters have to be placed in the stack

� Return values and exceptions. The HVM supports Java exceptions. A con-
sequence of this is that methods must, apart from returning their return
value (if not void), also return an indication of if an exception occurred.
In the HVM the exception state is packed together with the return value.
If the resulting data type becomes wider that 32 bit the return value is
placed on the stack.

5.2.10 Hardware Objects

Hardware Objects according to [57] are supported in the HVM, both for inter-
preted and compiled methods. Hardware Objects is a facility for accessing raw
memory from Java space, but it’s often used to control IO devices through ac-
cess to device registers of the underlying micro controller. On many embedded
targets (e.g. the ATMega2560 from Atmel) the access to device registers has to
take place using special purpose machine instructions, a read or write through a
load/store instruction will not have the desired e�ect. For this reason the HVM
cannot make an implementation of hardware objects that simply accesses mem-
ory using standard C idioms. The HVM delegates the actual access to native C
functions implemented in a thin hardware speci�c interface layer. The function
for writing a bit to IO has the following signature,

void writeBitToIO(int32 address,
unsigned short offset,
unsigned char bit);

An implementation of this function now has to be given for each target. When
access to �elds of Hardware Objects is done from Java space, the interpreter
or Java-to-C compiler will make sure that appropriate functions are called. If
enabling inlining in the C compiler, the function will be inlined and executed
very e�ciently.

5.2.11 1st Level Interrupt Handling

1st level interrupt handling as described in [38] is a facility for handling hardware
interrupts in Java space when they occur and not at a later point in time. The

53

HVM has been designed to be interruptable almost anywhere, and in the rare
cases where it is not, interrupts are disabled around critical regions. Combined
with the facility for entering Java space easily, as described in Section 5.2.5,
the ISR written in C or assembler can be very thin and simply call Java space
directly to handle the interrupt.

5.2.12 API Independence

The HVM does not put any requirements on the JDK used in Java programs.
When creating a new embedded Java project using e.g. Eclipse, the software
developer can build upon a JDK of his own choice. When the HVM computes
the dependency extent of an application, byte codes are loaded using the BCEL
API [5], and it makes no di�erence if one or the other JDK is used. The HVM
will simply load any byte code it encounters and translate it into C.

5.2.13 Native Variables

The main purpose of the HVM is to support the stepwise addition of Java soft-
ware components into an existing C based environment. It follows that the
ability to read C data from Java space and vice versa becomes very important.
Traditionally this is supported in Java through native methods, alternatively
through Hardware Objects. The HVM adds a third option termed native vari-
ables. The basic idea is to map static Java class variables to C variables and have
the Java-to-C compiler produce code that reads and writes to the corresponding
C variable instead of the class variable as would be the usual case. This map-
ping can be controlled by the developer through the IcecapCVar annotation,
the de�nition included here:

public @interface IcecapCVar {
String expression() default "";
String requiredIncludes() default "";

}

As an example of its use, consider the global C variable uint32 systemTick;
part of the KT4585 programmers framework. This variable is continuously
updated by the KT4585 RTOS every 10 ms and used to measure system time.
Using native variables this counter can be accessed directly from Java space in
the following manner:

54

public class XXX {
@IcecapCVar(expression ="systemTick",

requiredIncludes = "extern uint32 systemTick;")
static int tick;

public void test()
{

if (tick % 100 == 0)
{

...
}

}
}

The optional expression attribute de�nes to which C expression the static vari-
able is mapped and the optional requiredIncludes attribute allows the devel-
oper to add includes or external declarations required to compile the expression.
Native variables can only be accessed from compiled code.

5.3 Results
This section contains two example programs that illustrate the results of apply-
ing the methods described above. The �rst example is a very simple example
showing how the integration scenario described in Section 3.5 can be achieved,
the other example is a more elaborate example that illustrates how the HVM
scales to large applications.

5.3.1 Integrating With an RTOS

In this example a new task written in Java is added to an existing schedule of
the KT4585. In its default con�guration the KT4585 runs 17 tasks written in
C, each implementing various parts of the DECT protocol stack. The purpose
of the new Java task is to control the DIP (see Section 2.2) by stopping or
starting it. The DIP is stopped on the KT4585 by clearing a particular bit in a
device register at address 0xFF6006, and it is started by setting the same bit.
Figure 19 shows the full implementation of our Java RTOS task.
Actual control of the DIP is achieved through the use of the DIP CTRL REG
hardware object. To be able to send events to this task from the other tasks
implemented in C, a proxy task is registered with the RTOS. In the KT4585
this is accomplished using the following piece of C code:

DIPCONTROLLERTASK = OSRegisterTask(dipControllerProxy);

55

public class DIPController {
public static final byte STARTDIP = 0x10;
public static final byte STOPDIP = 0x11;
public static final byte INITTASK = (byte) 0x99;
public static final short URST = 0x0080;

private static class Port extends HWObject {
public short data;
public Port(int address) {

super(address);
}

}

private static Port DIP_CTRL_REG;

@IcecapCompileMe
static boolean handleEvent(byte primitive) {

boolean handled = true;
switch (primitive) {

case INITTASK:
DIP_CTRL_REG = new Port(0xFF6006); break;

case STARTDIP:
DIP_CTRL_REG.data |= URST; break;

case STOPDIP:
DIP_CTRL_REG.data &= ~URST; break;

default:
handled = false;

}
return handled;

}
}

Figure 19: RTOS task written in Java

And the content of the C proxy task is:

static uint32 stack[10];

void dipControllerProxy(MailType *mail) {
stack[0] = mail->Primitive;
main_DIPController_handleEvent(stack);

}

The function main DIPController handleEvent has been automatically gener-
ated by the HVM, and it contains C code that implements the functionality of
the handleEvent method from Figure 19. The HVM generates a handful of C
�les - always with the same names - and if these �les are added to the existing
build environment, adding a new task written in Java to the existing schedule

56

of the KT4585 has been accomplished.

� After this setup has been done, all future work with extending the behavior
of the Java task can take place entirely in Java

� The C source generated from the Java task is completely self contained
and does not add any further dependencies to the application

� The Java task needs a heap. This is included in the auto generated C �les.
The size of the heap can be set by the developer.

This example illustrates how the HVM supports the design goal of integratabil-
ity. How well it behaves in terms of e�ciency is the topic of Section 7.

5.3.2 Full SCJ application

This section illustrates the maturity level of the HVM by showing how it can run
the miniCDj benchmark from [52]. This benchmark is built on top of the SCJ
pro�le. The HVM supports the SCJ pro�le Level 0 and level 1 [63]. The SCJ
pro�le o�ers a scoped memory model and preemptive scheduling mechanism.
The HVM implements these features almost entirely in Java using Hardware
Objects, native variables and 1st level interrupt handling. The implementation
is described in detail in a paper accepted for the JTRES’12 conference. The
paper has been included in the Appendix.

The HVM can fully analyze, compile and run the miniCDj benchmark on
32 and 64 bit Intel platforms, but the benchmark requires a backing store of at
least 300 kB, so it will not be able to run on a low-end embedded system. Still
it will compile for a low-end embedded system and show how well the HVM
program specialization can keep the ROM foot print down.

To demonstrate RAM requirements, a simple SCJ Level 1 application con-
sisting of 1 mission and 3 periodic handlers scheduled by a priority scheduler, is
run. This application can run with a backing store of approx 8 kB thus allowing
us to deploy it on the KT4585.

After some minor adjustments the miniCDj benchmark compiles against
the javax.safetycritical package from the HVM SCJ implementation. As
JDK the OpenJDK 1.6.0 class libraries has been used in this evaluation. After
the HVM program specialization has optimized the application a total of 151
classes and 614 methods are included in the �nal binary. These classes are
divided between the packages as described in Figure 20.

Since the KT4585 C-runtime does not support float and double - two
data types used heavily by the miniCDj benchmark - the generated C code was
compiled for a similar platform with float support: the AVR ATMega2560
platform from Atmel. This is a 8 bit architecture with 8 kB of RAM and 256
kB of ash. The code was compiled using the avr-gcc compiler tool chain [6] .

The resulting ROM requirements are listed in Figure 21. Results are listed
for a mostly interpreted and for a compilation only con�guration.

57

Classes Methods
java.lang.* 46 171
java.util.* 10 42

javax.safetycritical.* 46 185
minicdj.* 49 216

Total 151 614

Figure 20: Program specialization results

ROM
Mostly interpreted 94682
Compilation only 282166

Compiling the miniCDj benchmark for an 8 bit low-end device (ATMega2560).

Using the HVM and the avr-gcc compiler tool-chain. Numbers in bytes.

Figure 21: HVM-SCJ ROM requirements

Using the mostly interpreted con�guration the ROM meets the goal with a
large margin and is well below the 256 kB available on the ATMega2560. Using
the compilation only con�guration the resulting application is approximately
276 kB and no longer �ts onto the ATMega2560.

The reason for the di�erence in ROM size between the compilation and
interpretation con�guration is, that C code generated by the HVM Java-to-C
compiler requires more code space than the original Java byte codes. Whether
this is a general rule cannot be inferred from the above, and if the HVM Java-to-
C compiler was able to produce tighter code the di�erence would diminish. But
this experiment has an interesting side-e�ect and shows, that in the particular
case of the HVM, the hybrid execution style supports the running of programs
on low-end embedded devices, that would otherwise not �t on the device.

The work reported in [52] shows results from running the miniCDj bench-
mark on the OVM, but it does not report a resulting ROM size. It does state
however that the benchmark is run on a target with 8MB ash PROM and
64MB of PC133 SDRAM - a much larger platform than the ATMega2560.

In the simple SCJ application with 1 mission and 3 handlers the RAM us-
age can be divided into the parts shown in Figure 22. The stack sizes and the
required sizes for the SCJ memory areas were found by carefully recording al-
locations and stack heights in an experimental setup on a PC host platform.
The results from compiling the application for the KT4585 using the gcc cross
compiler for the CR16c micro-controller (this benchmark does not utilize float
or double) is shown below,

The results show that a total of approx 10 kB RAM are required. The ROM
size of the application is approx 35 kB. These numbers allows us to run SCJ
applications on low-end embedded systems such as the KT4585.

58

SCJ related bytes
’Main’ stack 1024

Mission sequencer stack 1024
Scheduler stack 1024
Idle task stack 256

3xHandler stack 1024
Immortal memory 757
Mission memory 1042

3xHandler memory 3x64 = 192
HVM infrastructure

Various 959
Class �elds 557

Total 9715

Figure 22: HVM-SCJ RAM requirements

59

6 The HVM - Implementation
The HVM Java-to-C compiler is implemented in Java. It can be deployed as
an Eclipse plugin or it can run as a standalone Java application. When run as
an Eclipse plugin the developer can select from inside the Eclipse workbench,
which method is going to be the main entry point of the compilation. The
calculated dependency extent is displayed in a tree view inside Eclipse, allowing
the developer to browse the dependency extent and click on various elements to
see them in the Eclipse Java code viewer. When run from the command line,
input to the process is given manually to the compiler.

An overview of the compilation process is depicted in Figure 23.

Figure 23: Compilation sequence overview

The entry point - e.g. the main method or the handleEvent method of a task - is
the input to the process. The HVM converter will read the byte codes from the
entry point and convert each byte code into a node in the control ow graph of
the method. These nodes will in following visits of this graph be annotated with
information used by the compilation process. While constructing the control
ow graph, required dependencies are put on a stack of work items and will give
rise to further methods being loaded, until the full dependency extent of the
main entry point has been loaded. The details of identifying the dependency
extent is explained in Section 5.2.1.

After all methods have been converted into ow graphs, each ow graph
is visited several times performing various analysis on the graph. Each analy-

60

sis will annotate the byte codes with information pertaining to the particular
analysis. E.g. the producer-consumer analysis annotates each byte code with
a representation of which other byte codes have produced cells on the stack as
the stack looks upon entry into this byte code.

Various information from the constant pool of the class �le containing the
method code is inlined into the byte code, extending and rearranging the byte
code. Other changes to the byte code are done as well to make interpretation
and compilation easier in the following phases.

After all methods have been annotated, the Java-to-C compiler visits the
ow graph one �nal time to produce the �nal C code that is the outcome of the
compilation.

If a method is marked for interpretation, the byte codes of the method are
translated into a C array of unsigned char values.

The produced code, together with the interpreter and other utilities imple-
mented in C, are copied by the HVM plugin into a previously speci�ed location
and can now be included in the existing build environment for a particular
platform.

61

7 HVM Evaluation
Section 5.3.1 demonstrated how the HVM can be used to add Java software
components into an existing C based execution and development platform. Ad-
ditionally Section 5.3.2 demonstrated the scalability of the HVM to large SCJ
applications.

This Section shows measurements comparing the execution e�ciency of the
HVM to other similar environments. Even though the HVM can be used to
program Java for embedded systems it is also very important to engineers that
the e�ciency by which Java can run is close to the e�ciency they are accustomed
to for their current C environments.
For high-end embedded platforms results already exists regarding execution
speeds of Java programs compared to the same program written in C. In their
paper [49] the authors show that their Java-to-C AOT compiler achieves a
throughput to within 40% of C code on a high-end embedded platform. This
claim is thoroughly substantiated with detailed and elaborate measurements
using the CDj and CDc benchmarks[36].

Since the memory requirements of the CDj and CDc benchmarks (see Sec-
tion 5.3.2) prevents us from running them on low-end embedded systems, this
thesis introduces a small range of additional benchmarks. The idea behind these
benchmarks are the same as from CDj/CDc: To compare a program written in
Java with the same program written in C.

7.1 Method
The 4 benchmark programs are written in both Java and C. The guiding prin-
ciples of the programs are,

� Small. The benchmarks are small. They don’t require much ROM nor
RAM memory to run. The reason why this principle has been followed is
that it increases the probability that they will run on a particular low-end
embedded platform

� Self-contained. The benchmarks are self-contained, in that they do not
require external Java nor C libraries to run. They don’t even require
the java.util.* packages. The reason is that most embedded JVMs
o�er their own JDKs of varying completeness, and not relying on any
particular Java API will increase the chance of the benchmark running
out-of-the-box on any given execution environment

� Non-con�gurable. The benchmarks are �nished and ready to run as is.
There is no need to con�gure the benchmarks or prepare them for execu-
tion on a particular platform. They are ready to run as is. This will make
it easier to accurately compare the outcome from running the benchmarks
on other platforms, and allow other JVM vendors to compare their results

62

� Simple. The behavior of each benchmark is simple to understand by a
quick scrutinizing of the source code. This makes it easier to understand
the outcome of running the benchmark and to asses the result.

The benchmark suite of only 4 benchmarks is not complete and the quality
and relevance of the suite will grow as new benchmarks are added. The guiding
principles of the benchmarks are very important, especially the principle of being
self-contained, since this is a principle most important for being successful at
running a benchmark on a new embedded platform.

The current benchmarks are:

1. Quicksort. The TestQuicksort benchmark creates an array of 20 inte-
gers initialized with values from 0 to 20 in reverse order. Then a simple
implementation of the quicksort method sorts the numbers in place. This
benchmark applies recursion and frequent access to arrays

2. TestTrie. The TestTrie benchmark implements a tree like structure of
characters - similar to a hash table - and inserts a small number of words
into the structure. This benchmark is focusing on traversing tree like
structures by following references

3. TestDeterminant. The TestDeterminant benchmark models the concept
of vectors and matrices using the Java concepts of classes and arrays.
Then the Cramer formula for calculating the determinant of a given 3x3
matrix is applied

4. TestWordReader. The TestWordReader benchmark randomly generates
17 words and inserts them into a sorted list of words, checking the list
before each insert to see if it is not there already. Only non duplicates are
inserted.

The nature of these benchmarks are not exhausting all aspects of the Java
language, but they still reveal interesting information about the e�ciency of
any given JVM for embedded systems. The purpose of the benchmarks are to
reveal how e�ciently Java can be executed in terms of clock cycles as compared
to C and how much code space and RAM are required. The benchmarks are
not intended to test garbage collection, and non of the benchmarks require
a functioning GC to run. Nor do they give any information about the real-
time behavior of the system under test. To test GC e�ciency and/or real-time
behavior of a given JVM the CDj/CDc benchmarks are available.

In Section 7.2 compares the results from running these benchmarks on GCC,
FijiVM, KESO, HVM, GCJ, JamVM, CACAO and HotSpot. This will give us
valuable information about the e�ciency with which these environments can
execute Java code as compared to each other and as compared to C based
execution environments.

63

7.1.1 Benchmark execution - High-end Platforms

Since only three of the tested execution environments (GCC, KESO and HVM)
are capable of running these benchmarks on low-end embedded systems, they
were �rst run on a 32 bit Linux PC. On this platform all JVMs under test
could execute the benchmarks. The number of instructions required to run the
benchmarks was measured using the Performance Application Programming
Interface (PAPI) [11, 47]. The reason for measuring the instruction count and
not the number of clock cycles is that the instruction count is a deterministic
value for the benchmarks, but the clock cycle count is not on advanced proces-
sors. This �rst run of all the benchmarks on a 32 bit Linux PC will not by it self
give us the desired results for low-end embedded platforms, but it will allow us
to compare the JVMs under test against each other and against C on high-end
platforms. To achieve the desired results for low-end embedded platforms the
benchmarks will be run on a particular low-end embedded environment as well
using GCC, HVM and KESO. This will give the desired results for these two
JVMs, but compared with the results for high-end environments one can make
statements about what could have been expected had it been possible to run all
JVMs on a low-end embedded environment.

For all execution environments the native instruction count was measured
by calling the PAPI API before and after each test run. The tests was run
several times until the measured value stabilized - this was important for the
JIT compilers especially, but also for the other environments. E.g. calling
malloc for the �rst time takes more time that calling malloc on subsequent
runs. All in all the measurements reported are for hot runs of the benchmarks.

7.1.2 Benchmark execution - Low-end Platforms

To obtain a result for low-end embedded platforms the benchmarks was run
using GCC, HVM and KESO on a ATMega2560 AVR micro-controller. This
is an 8 bit micro-controller with 8 kB of RAM and 256 kB ROM. On this
simple platform there is a linear, deterministic correspondence between num-
ber of instructions executed and clock cycles. The AVR Studio 4 simulator
was used to run the benchmarks and accurately measured the clock cycles re-
quired to execute each benchmark. Figure 24 shows an example of running the
TestQuicksort benchmark using GCC. To produce the executable the avr-gcc
cross compiler (con�gured to optimize for size) was used.

64

Figure 24: AVR Studio 4

In this test run the clock cycles spent to get to the for-loop was measured (in this
case 125 clock cycles), and this number was subtracted from the time taken to
perform the benchmark. Then the test was run 20 times, in this case yielding a
clock cycle count of 107131. GCC takes (107131 - 125) / 20 = 5350 clock cycles
to perform the benchmark.

To obtain similar results for KESO, the C source produced by the KESO
Java-to-C compiler was compiled using the avr-gcc cross compiler. An AVR
Studio 4 project was created to enable the measurement of clock cycles as above.
Again the start up time was measured and each benchmark run a number of
times to arrive at an average time taken for KESO to execute the benchmark.
Similarly for HVM. All projects con�gured to optimize for size.

These measurements are directly relevant for low-end embedded platforms
and allow us to validate how the HVM compares to GCC and KESO. Since
these three environments also appear in the high-end platform measurements,
where they can be related to results from the other environments, they o�er a
chance in Section 7.3 to predict how these other high-end environments would
have performed had they been able to run on the ATMega2560.

7.2 Results
The measurements performed using the PAPI API on a 32 bit Linux PC plat-
form are listed in Figure 25 and 26.

The instruction count taken for the C version to execute is de�ned as 100.
The instruction count taken for the other environments is listed relatively to C
above. E.g. the HVM uses 36% more instructions to execute the Trie benchmark

65

C KESO FijiVM HVM GCJ

Quicksort 100 101 136 111 172
Trie 100 93 54 136 245

Determinant 100 59 37 96 171
WordReader 100 251 218 177 328

Total 100 126 111 130 229

Figure 25: Instruction Count Comparison - Part 1

C JamVM HVMi CACAO HotSpot

Quicksort 100 697 4761 147 156
Trie 100 772 1982 294 234

Determinant 100 544 1664 294 48
WordReader 100 975 4979 263 142

Total 100 747 3346 250 145

Figure 26: Instruction Count Comparison - Part 2

than native C.
The results from comparing HVM and KESO on the ATMega2560 are listed

in Figure 27.

C KESO HVM

Quicksort 100 108 130
Trie 100 223 486

Determinant 100 190 408
WordReader 100 331 362

Total 100 213 347

Figure 27: Cycle count comparison

This is an accurate cycle count comparison for KESO and HVM.

7.3 Discussion
The most interesting results are contained in Figure 27. This whows that for
the benchmarks tested,KESO is approximately 2 times slower than C and the
HVM is approximately 3 times slower than C.

There are several observations that should be taken into account when con-
sidering the above experiment:

� KESO supports GC, the HVM does not but relies on SCJ memory man-
agement. Even though GC is not in e�ect above, the KESO VM probably

66

pays a price in terms of execution e�ciency for the presence of GC

� The HVM supports Java exceptions, KESO does not. Very rudimentary
experiments not shown here indicate that the cost of exception support is
an approx 25% decrease in performance for the HVM

� Scrutinizing the C code produced by KESO shows that the Java type
short is used in places where this is not correct. E.g. code had to be
manually �xed for the WordReader benchmark to reintroduce the correct
data type int in various places. Using short where int is required might
be reasonable in several cases, and this will have a signi�cant impact on
performance, especially on 8 bit platforms as the ATMega2560.

The following substantiated observations for low-end embedded platforms
can be made,

� Java-to-C compilers are a little slower than native C, but not by an order
of magnitude. It is likely that they can be approximately half as fast as
native C

� KESO is faster than HVM. The HVM achieves a throughput of approx
50% that of KESO.

67

8 Summary and Contributions
Apart from this thesis, and the HVM itself as a complete software product, the
research performed during the thesis period has been documented in 5 confer-
ence papers, 1 journal article and 1 extended abstract. This Section gives a brief
introduction to each paper and puts it in context of the HVM. All the papers
are included in full in the appendix.

8.1 The Java Legacy Interface - JTRES 2007
In 2007 I used an existing VM (called SimpleRTJ) to support the execution of
Java software components on the KT4585 embedded device. In the role of main
author of this paper I describe how the SimpleRTJ VM was changed to allow
for executing Java tasks alongside existing C tasks. An important outcome of
this was a proof-of-concept that it was actually possible to execute Java on the
KT4585 while keeping existing legacy software running. The experiment also
identi�ed some short comings - most importantly the chosen VM being an in-
terpretation only VM, it was too slow for most practical purposes. Additionally
intelligent class linking was not supported thus making it hard to scale to larger
Java APIs.

8.2 Hardware Objects for Java - ISORC 2008
Since it was now possible to run Java in and by itself on the KT4585, I quickly
recognized the need for being able to interact with hardware in a more elegant
manner than through native methods. Based on an idea called Hardware Objects
by Martin Schoeberl - the main author of this paper - I implemented this feature
in the SimpleRTJ and through this experiment contributed to the evaluation
of the Hardware Object concept. Hardware Objects later became an important
feature of the HVM used in e.g. the SCJ implementation, and in general the
preferred way for the HVM to interact with hardware from Java space.

8.3 Interrupt Handlers in Java - ISORC 2008
Another important feature used when programming embedded devices is the
ability to handle interrupts as they occur. In the role of main author of this
paper I describe how interrupts can be handled directly in Java space, in the
context of the actual interrupt and not at some later point. I implemented the
idea in the SimpleRTJ VM and demonstrated how Hardware Objects together
with 1st level interrupt handling allows for writing device drives in pure Java.

8.4 A Hardware Abstraction Layer in Java - TECS Jour-
nal 2011

In the role of co-author a contribution was made to the evaluation section of
this journal paper. The paper described how a modern, type-safe programming

68

language like Java can be used to write devices drivers for embedded systems.
The examples of implementing the concept of Hardware Objects and 1st level
interrupt handling for the SimpleRTJ, as described above, played a signi�cant
role in the evaluation section of this Journal paper. Additionally I implemented
the concepts on a new VM (Ka�eVM).

At this point in time it was clear that Java can indeed be made to run on
low-end embedded devices, can be integrated with existing C code, and can
be used to to program hardware. It was also clear that existing VMs - e.g.
SimpleRTJ and Ka�eVM, was not suitable for devices like the KT4585. The
main reasons were lack of e�ciency and the monolithic nature of the VMs. At
this point in time I decided to start the work with implementing the HVM.

8.5 Flash Memory in Embedded Java Programs - JTRES
2011

The �rst paper coming out of this e�ort was about how to support host initial-
ized static data in Java. This concept of static/read-only data placed exclusively
in ash, was well known from C environments. In the role of sole author I de-
scribe in this paper how read-only data can be handled in a similar manner in
Java environments. The HVM was the experimental workbench for the evalua-
tion.

After this paper a burst of implementation work was done on the HVM to
increase its performance.

8.6 Towards a Real-Time, WCET Analysable JVM Run-
ning in 256 kB of Flash Memory - Nordic Workshop
on Programming Theory 2011

In the role of a contributing author this extended abstract describes the changes
that had to be made to the HVM in order to make it analyzable for WCET.

8.7 Safety-Critical Java for Low-End Embedded Platforms
- JTRES 2012

In the role of 1 of 3 equal contributors this paper presents an implementation of
the Safety-Critical Java pro�le (SCJ), targeted for low-end embedded platforms
with as little as 16 kB RAM and 256 kB ash. The implementation is built
on top of the HVM. The work utilizes many of the capabilities of the HVM:
Hardware objects, 1st level interrupt handling, native variables, and program
specialization through intelligent class linking.

The resulting pro�le implementation and evaluation benchmarks are the
until now most clear indication that the ideas behind the HVM scale to complex
applications and to real industrial settings.

69

9 Future Work
The state of the HVM today is such that it can be used as it is in many concrete
industrial and educational scenarios. Following this step forward, a selection
of obvious research directions present themselves. This section presents those
research topics and hint at a future research plan.

9.1 Tool Support
The �rst and foremost task to take up, is to follow up on the ideas in [8]. In
their paper the authors lays out a vision for a complete environment comprised
by a set of tools for supporting the development and execution of hard-real time
embedded Java. Using the WALA [1] and UPPAAL frameworks the authors
have developed tools for Conformance checking, Memory analysis and Schedu-
lability analysis. Using UPPAAL the authors of [23] present the tool TetaJ that
statically determine the WCET of Java programs executed on the HVM. These
tools are today standalone tools, and it would be obvious to embed them into
the HVM Eclipse plugin. The HVM plugin today supports the initiation of the
Java-to-C translation, but it can be extended to also activate tools for the types
of analysis mentioned above. This will bring about a complete Eclipse based
toolbox for development of real-time Java programs for embedded systems.

9.1.1 Debugging

One obvious tool that is missing is the ability to interactively debug Java pro-
grams. Currently the HVM takes some care to produce fairly readable C code,
and it uses names of C data variables that are inherited from Java space. Also
the Java source lines are embedded as comments into the generated C code.
This makes it possible today to debug the resulting program using existing C
based debugging environments. Still, it resembles only being able to debug at
the assembler level while programming at the C level. The Eclipse environment
de�nes a standardized debugging protocol, and it would be very useful for pro-
grammers to support single-stepping and other standard debugging facilities, at
the Java level, of applications executed on the HVM.

9.2 Large Scale Industrial Experiments
The Polycom industrial case presented in the analysis part of this thesis has
formed the basis of HVM experiments up until now. Recently, through cooper-
ation with the Danish company Grundfos [32], a new platform has been intro-
duced. Grundfos is looking for input to their decision making about which direc-
tion their embedded development methods should take in the future. Grundfos
has considered model based development, but are also interested in exploring
the use of Java for low-end embedded software development. Currently work
is going on with de�ning a concrete development project where the HVM will

70

be integrated with their existing C based environment and where Grundfos de-
velopers will produce new functionality written in Java and executed alongside
existing C based functionality.

Such large scale industrial experiments will bring valuable feedback about
howthe HVM and other tools may be improved, and it will allow Grundfos to
work with state-of-the-art embedded Java environments to gain the bene�ts
from high-level software development on their low-level devices.

9.3 HVM optimizations
Section 7 shows that the HVM today achieves a throughput of approximately
a third of native C. For the work with the Polycom and Grundfos devices this
is acceptable, and no present request to improve on this has been made. Still,
there are some obvious optimizations still to make in the HVM to improve on
e�ciency:

� Static initializers. When static methods and variables are accessed the
Java speci�cation de�nes when the static initializers of the static class
must be executed. Currently this check for if the class has been initialized
is done more often than necessary. A static analysis of the Java code will
be able to infer at which points the check for static initialization can be
avoided, because it will be statically decidable that the check must have
been performed previously. This is supported by KESO, but not yet by
the HVM.

� Exception handling. Handling the throw and catch of exceptions, which
is supported in full by the HVM, comes at a signi�cant cost of approxi-
mately 25% (see Section 5.2.2). Given an application it could be useful
to explore to which extent a static analysis can gain information about
which exceptions could be thrown and where. If it can be inferred that
a method cannot throw an exception the code generated for the method
can be made signi�cantly more e�cient.

� Object �eld access. In the HVM access to object �elds is done by casting
the object reference to an unsigned char array and accessing certain
parts of that array depending on the type of the �eld. In KESO, each
Java class is translated into a C struct and the object �elds are accessed
through access to the struct members. In practice this allows GCC and
other C compilers to generate more e�cient code for accessing object
�elds. This trick could bene�t the HVM as well.

� Virtual dispatch. The HVM is very good at recognizing if a virtual call site
is not really virtual and turning it into a non virtual method call (which
can be implemented more e�ciently, see Section 5.2.8). Still some call
sites are truly virtual and today they are not handled very e�ciently in
the HVM. At a truly virtual call site a special utility function gets called
for the dispatching of the call to the proper receiver. Instead the compiler

71

could generate an in-line switch statement that switches on the type of
the target object. This will give a larger code size but will most likely
be signi�cantly more e�cient. This idea resembles a Polymorphic Inline
Cache and was put forward by [33].

� Template recognition. The Java compiler translates Java constructs like
for and while loops into common templates of byte code. If the HVM
could recognize these templates, the corresponding for and while con-
structs of the C language could be used. Today the HVM generates goto
statements. It is not obvious that using the corresponding for and while
constructs of the C language instead of goto would increase performance,
but it will most likely make the resulting C code more readable.

9.4 HVM Optimizations Correctness
The producer-consumer method described in Section 5.2.7 is based on some
conjectures about the nature of byte codes generated by Java compilers. Based
on these conjectures one can narrow the type of data manipulated by individual
byte codes, and thus optimize the code generated to use the most narrow type
possible. It seems important to substantiate that the conjectures indeed hold
true for all programs, or if they do not, adapt the optimizations to handle failing
scenarios. Work by [25] is relevant here.

9.5 Java Level GC
The HVM SCJ implementation, described in [63] and included in the appendix,
uses the concepts of Hardware Objects, 1st level interrupt handling and native
variables to implement e.g. process scheduling almost entirely in Java - a fea-
ture usually implemented in the VM infrastructure. Currently investigations
are undergoing to establish if it would be possible to use the same features to
implement a garbage collector for the HVM entirely (or almost entirely) in Java.
Such a solution would have several advantages. First it would be more portable
than a C based solution, and secondly the intelligent class linking facility would
exclude the GC if it were not used, thus keeping down the size of executables
not utilizing GC. Thirdly it would allow developers to easily implement or adapt
GC strategies using the Java language as opposed to changing the VM source
code itself.

9.6 Merging HVM with KESO, FijiVM and others
Each of the VMs - KESO, FijiVM, and HVM - have some advantages that the
others don’t have. E.g. the KESO VM supports the useful concept of isolated
domains, and it produces tight and readable C code. The FijiVM produces
rather obscure but strikingly e�cient C code, and it is the most e�cient of the
three mentioned VMs. Additionally the FijiVM supports real-time GC, a very
relevant feature. The HVM produces C code that is completely self contained

72

and does not rely on a POSIX like OS or the presence of any other OS or C
runtime library, while still producing fairly e�cient C code. Also the HVM is
integrated with the Eclipse environment and supports program specialization
through intelligent class linking.

Ideas from one environment could bene�t the others. E.g. could KESO
be integrated with Eclipse? Could it generate code not depending on external
features? How easy would it be to refactor FijiVM to support intelligent class
linking and thus allow it to produce self-contained code, in case the Java source
does not use any OS functionality? In other words, does FijiVM have to be
monolithic? Does KESO have to rely on OSEK?

Extending each of these VMs with features from each other or carefully
selecting the best parts from each to collect them in a new and even better VM
would be very interesting.

9.7 HVM in Educational Settings
The HVM has already been used in educational settings and some new ones are
under the way. Recently two master thesis projects from AAU were completed,
in which the HVM played a signi�cant role (1) WCET analysis of Java programs
on common hardware, also documented in [23] and (2) an implementation of
STM (Software Transactional Memory) based on the HVM. In the near future
it is the intention to use the HVM at VIA University College, when teaching
courses in real-time programming and concepts. Previously those courses was
taught using the C programming language. Evaluations of the courses revealed
that C, being in this setting a new language to the students, was an obstacle
in the process of learning the curriculum. The curriculum is not C as such, but
rather real-time programming and concepts. Since the students are intimately
familiar with Java, the teaching of real-time programming and concepts will be
better when using Java instead of C. At AAU, courses are available to industrial
partners as well as normal students. One of these courses have the aim of
upgrading current C programmers to master Java as well. In this course AAU
plans to use the HVM to allow the industrial partners to program exercises and
examples in Java on their own embedded hardware.

9.8 HVM for .NET
The C# language is usually translated into a byte code format called the
Common Intermediate Language (CIL). Could the ideas behind the HVM, es-
pecially the program specialization through the intelligent class linking feature,
be applied to C# programs as well? The C# language is targeted at server,
desktop and in some case high-end embedded systems as well, but it may be
possible to run CIL programs on even smaller platforms.

73

10 Conclusion
This thesis has presented the analysis, design and implementation of the HVM.
The HVM adds incrementality and integratability to the set of features sup-
ported by Java on low-end embedded platforms.

The work started out of a frustration: it was not possible to �nd an embedded
Java environment that could run on the KT4585 while keeping the existing
legacy software running as well. Existing environments were not incremental:
adding limited amounts of Java code required a disproportionate amount of
RAM and ROM. They were not integratable: they required the inclusion of
POSIX-like functionality or the use of particular compilers and libraries, or they
produced or contained code that was not directly compilable by the KT4585
build environment. The HVM shows that incrementality can be achieved: the
smallest possible Java program executed using the HVM requires approx 8 kB
of ROM and a few bytes of RAM. The HVM shows that integratability can be
achieved: it produces self-contained, strict ANSI-C code, that can be embedded
into existing build environments about which no assumptions are made. In
operational terms one can program a new OS Task for the KT4585 in Java and
include it in the existing build environment (see Section 5.3). C tasks and Java
tasks can coexist, and the KT4585 software developer can choose which parts
of an application to write in C and which parts to write in Java.

The HVM supports Hardware Objects and 1st level interrupt handling, and
adds the novel feature of native variables. These three concepts make it possible
to write device drivers or, in general, to access hardware from Java space, just
as the developer will be accustomed to do in C.

It is now possible to start �eld research with companies such as Polycom and
Grundfos and write Java code for industrial devices in operation today. This
will in the future give valuable input to the underlying assumption that Java is
a better language than C in terms of code quality and speed of development.
This claim can not be veri�ed or rejected yet, but now the technical tools to
start the experimental work are available.

In the autumn of 2012 the HVM is going to be used in 6th semester courses
at VIA University College in Horsens for programming the KT4585 in Java.
The feedback from the students will be valuable feedback about the use of the
HVM itself.

Apart from the HVM itself, the thesis work have appeared in 5 conference
papers, 1 journal article and 1 extended abstract (See Section 8). The HVM
has been used in 2 master thesis projects and been referred from several other
papers.

The work with the HVM has not �nished. Section 9 lays out a number of
future tasks, and the HVM can be a signi�cant part of fruitful research at CISS,
VIA University College, and elsewhere in the near future.

The introduction stated a problem: that current environments for embedded
Java lacked in incrementality and integratability. This thesis has presented
techniques to solve these problems, and the HVM demonstrates their feasibility.

74

11 Acknowledgement
I am profoundly grateful to Hans S�ndergaard. He introduced me to embedded
real-time Java in the �rst place, and later encouraged me to start this thesis
work. He also introduced me to a very fruitful and inspiring research community
at CISS, Aalborg University. I am forever grateful to A.P. Ravn from CISS for
teaching me how to write scienti�c materiel and for always helping me to keep
the vision clear and the overall goal in site. I am very grateful to my counsellor
Bent Thomsen, who encouraged me to take up my thesis work again after a
longer break, and with whom I have had many inspiring conversations. I have
used his deep insight into the �eld of current research in real-time embedded
software to position and clarify my work in relation to other e�orts. In the �rst
half of my thesis period I was very lucky to be introduced to Martin Schoeberl.
Through his ideas and cooperations with him I appeared as coauthor in my �rst
publications. I hope in the future I will be able to work with him again. I also
thank Kasper S�e Luckow, Casper Svenning Jensen and Christian Frost for their
master thesis work, in which they made the HVM interpreter time predictable
and used UPPAAL to calculate WCET boundaries for Java code executed on
the HVM [23]. I’m very grateful to Polycom and my former boss, Dion Nielsen,
who allowed me to start this thesis work on a part time basis while working at
Polycom. Finally, I am very grateful to VIA University College and my current
boss Jens Cramer Alkj�rsig, who have allowed me to �nish the work and given
me time and resources to do it.

75

Appendix

References
[1] T.J. Watson libraries for analysis (WALA). http://wala.sourceforge.

net, Visited August 2012 2012.

[2] Uppaal. http://www.uppaal.com/, Visited August 2012 2012.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[4] aicas. http://www.aicas.com/jamaica.html. Visited June 2012.

[5] Apache. BCEL Manual. Available at: http://commons.apache.org/
bcel/manual.html, 2012. Visited June 2012.

[6] AVRFeaks. AVR Freaks. http://www.avrfreaks.net/, Visited June
2012.

[7] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dy-
namic Optimization System. SIGPLAN Not., 35(5):1{12, May 2000.

[8] T. B�gholm, C. Frost, R. R. Hansen, C. S. Jensen, K. S. Luckow, A. P.
Ravn, H. S�ndergaard, and B. Thomsen. Towards Harnessing Theories
Through Tool Support for Hard Real-Time Java Programming. Innovations
in Systems and Software Engineering, pages 1{12, 2012.

[9] P. Bothner. http://www.linuxjournal.com/article/4860. Visited
march 2012.

[10] F. Brandner, T. Thorn, and M. Schoeberl. Embedded JIT Compilation
with CACAO on YARI. In Proceedings of the 2009 IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC ’09, pages 63{70, Washington, DC, USA, 2009. IEEE
Computer Society.

[11] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable
Programming Interface for Performance Evaluation on Modern Processors.
Int. J. High Perform. Comput. Appl., 14(3):189{204, Aug. 2000.

[12] C. Chambers and D. Ungar. Customization: Optimizing Compiler Tech-
nology for SELF, a Dynamically-typed Object-Oriented Programming Lan-
guage. SIGPLAN Not., 24(7):146{160, June 1989.

[13] L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller. Java Bytecode
Compression for Low-end Embedded Systems. ACM Trans. Program. Lang.
Syst., 22(3):471{489, May 2000.

[14] R. Costa and E. Rohou. Comparing the Size of .NET Applications with Na-
tive Code. In Proceedings of the 3rd IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis, CODES+ISSS
’05, pages 99{104, New York, NY, USA, 2005. ACM.

163

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
An E�cient Method of Computing Static Single Assignment Form. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’89, pages 25{35, New York, NY, USA,
1989. ACM.

[16] L. P. Deutsch and A. M. Schi�man. E�cient Implementation of the
Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’84, pages 297{
302, New York, NY, USA, 1984. ACM.

[17] Diasemi. Dialog semiconductor. http://www.diasemi.com/
single-chip-dect-cat-iq-solution. Visited January 2012.

[18] L. Dickman. A Comparison of Interpreted Java, WAT, AOT, JIT, and
DAC. http://www.helmitechnologies.com/campaign/knowledge_kit/
esmertec.pdf, 2002.

[19] DSE. http://www.dseair.dk/. Visited June 2012.

[20] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simplifying
Event-driven Programming of Memory-constrained Embedded Systems. In
SenSys ’06: Proceedings of the 4th international conference on Embedded
networked sensor systems, pages 29{42, New York, NY, USA, 2006. ACM
Press.

[21] C. Erhardt, M. Stilkerich, D. Lohmann, and W. Schr�oder-Preikschat. Ex-
ploiting Static Application Knowledge in a Java Compiler for Embedded
Systems: A Case Study. In Proceedings of the 9th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’11,
pages 96{105, New York, NY, USA, 2011. ACM.

[22] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen: a generator of
e�cient virtual machine interpreters. Softw. Pract. Exper., 32(3):265{294,
Mar. 2002.

[23] C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen. Wcet analysis of
java bytecode featuring common execution environments. In Proceedings
of the 9th International Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’11, pages 30{39, New York, NY, USA, 2011.
ACM.

[24] M. Fulton and M. Stoodley. Compilation techniques for real-time java pro-
grams. In Proceedings of the International Symposium on Code Generation
and Optimization, CGO ’07, pages 221{231, Washington, DC, USA, 2007.
IEEE Computer Society.

[25] E. Gagnon, L. J. Hendren, and G. Marceau. E�cient inference of static
types for java bytecode. In Proceedings of the 7th International Sympo-
sium on Static Analysis, SAS ’00, pages 199{219, London, UK, UK, 2000.
Springer-Verlag.

164

[26] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded systems.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Pro-
gramming language design and implementation, pages 1{11, New York, NY,
USA, 2003. ACM Press.

[27] GCC. http://gcc.gnu.org/install/specific.html. Visited march
2012.

[28] GCC. http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html.
Visited June 2012.

[29] GNU. http://www.gnu.org/software/classpath/classpath.html. Vis-
ited June 2012.

[30] GNU. http://ulibgcj.sourceforge.net/. Visited June 2012.

[31] O. Group. http://portal.osek-vdx.org/files/pdf/specs/os223.pdf.
Visited May 2012.

[32] Grundfos. http://www.grundfos.com/. Visited June 2011.

[33] U. H�olzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Proceedings
of the European Conference on Object-Oriented Programming, ECOOP ’91,
pages 21{38, London, UK, UK, 1991. Springer-Verlag.

[34] jamvm. http://jamvm.sourceforge.net/. Visited June 2011.

[35] D.-H. Jung, S.-M. Moon, and S.-H. Bae. Evaluation of a java ahead-of-time
compiler for embedded systems. Comput. J., 55(2):232{252, Feb. 2012.

[36] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and J. Vitek. A
family of real-time java benchmarks. Concurr. Comput. : Pract. Exper.,
23(14):1679{1700, Sept. 2011.

[37] S. Korsholm and P. Jean. The Java legacy interface. In JTRES ’07: Pro-
ceedings of the 5th international workshop on Java technologies for real-time
and embedded systems, pages 187{195, New York, NY, USA, 2007. ACM.

[38] S. Korsholm, M. Schoeberl, and A. P. Ravn. Interrupt handlers in Java.
In Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing, pages 453{457, Washington, DC, USA, 2008.
IEEE Computer Society.

[39] A. Krall and R. Gra. Cacao { a 64 bit javavm just-in-time compiler. In
Proceedings of the Workshop on Java for Science and Engineering Compu-
tation, PPoPP 97. G. C. Fox and W. Li Eds. ACM, 1997.

165

[40] B. B. Kristensen, O. L. Madsen, and B. M�ller-Pedersen. The when, why
and why not of the beta programming language. In Proceedings of the third
ACM SIGPLAN conference on History of programming languages, HOPL
III, pages 10{1{10{57, New York, NY, USA, 2007. ACM.

[41] P. Nanthanavoot and P. Chongstitvatana. Code-Size Reduction for Em-
bedded Systems using Bytecode Translation Unit. In Conf. of Electri-
cal/Electronics, Computer, Telecommunications, and Information Technol-
ogy (ECTI), 2004.

[42] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[43] K. Nilsen. Di�erentiating features of the perc virtual machine. Available
at: http://www.aonix.com/pdf/PERCWhitePaper_e.pdf, 2009.

[44] NOHAU. http://www.nohau.se/iar. Visited January 2012.

[45] NOHAU. http://www.iar.com/en/Products/
IAR-Embedded-Workbench/. Visited February 2012.

[46] OPENJDK. http://openjdk.java.net/. Visited June 2012.

[47] PAPI. Papi - the Performance Application Programming Interface. http:
//icl.cs.utk.edu/papi/index.html, 2012.

[48] G. Phipps. Comparing observed bug and productivity rates for Java and
c++. Softw. Pract. Exper., 29:345{358, April 1999.

[49] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.
Schism: fragmentation-tolerant real-time garbage collection. SIGPLAN
Not., 45(6):146{159, June 2010.

[50] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on resource-constrained
platforms with �ji vm. In Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’09,
pages 110{119, New York, NY, USA, 2009. ACM.

[51] J. Plevyak and A. A. Chien. Precise concrete type inference for object-
oriented languages. SIGPLAN Not., 29(10):324{340, Oct. 1994.

[52] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and J. Vitek. De-
veloping safety critical java applications with oscj/l0. In Proceedings of
the 8th International Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’10, pages 95{101, New York, NY, USA, 2010.
ACM.

[53] Polycom. http://www.polycom.dk/. Visited January 2012.

166

[54] Polycom. The kirk dect application module 6.0. http://www.polycom.
eu/products/voice/wireless_solutions/dect_communications/
modules/dect_krm_application.html, 2012.

[55] E. Quinn and C. Christiansen. Java pays { positively. Available at:
http://www.justice.gov/atr/cases/exhibits/1344.pdf, 1998. Visited
February 2012.

[56] V. Research. 2011 EMBEDDED SOFTWARE & TOOLS MARKET IN-
TELLIGENCE SERVICE. http://www.vdcresearch.com/, 2011.

[57] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P. Ravn. Hardware ob-
jects for Java. In In Proceedings of the 11th IEEE International Sympo-
sium on Object/component/serviceoriented Real-time distributed Comput-
ing (ISORC 2008. IEEE Computer Society, 2008.

[58] N. Semiconductor. http://www.national.com/. Visited January 2012.

[59] N. Semiconductor. CR16C, Programmers Reference Manual. http://
www.national.com/appinfo/cp3000/publicfiles/Prog_16C.pdf. Vis-
ited January 2012.

[60] O. Shivers. http://www.ccs.neu.edu/home/shivers/citations.html#
diss. Visited August 2012.

[61] F. Siebert. Realtime garbage collection in the jamaicavm 3.0. In Proceedings
of the 5th international workshop on Java technologies for real-time and
embedded systems, JTRES ’07, pages 94{103, New York, NY, USA, 2007.
ACM.

[62] V. Sundaresan, L. Hendren, C. Raza�mahefa, R. Vall�ee-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
java. SIGPLAN Not., 35(10):264{280, Oct. 2000.

[63] H. Sndergaard, S. Korsholm, and A. P. Ravn. Safety-Critical Java for Low-
End Embedded Platforms. Accepted for JTRES’12, Pending publication,
2012.

[64] A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W. Steven-
son. A practical tool kit for making portable compilers. Commun. ACM,
26(9):654{660, Sept. 1983.

[65] TheOpenGroup. Safety-Critical Java Technology Speci�cation (JSR-302).
Draft Version 0.79, TheOpenGroup, May 2011.

[66] R. Vall�ee-Rai, P. Co, E. Gagnon, L. H. n, P. Lam, and V. Sundaresan. Soot
- a java bytecode optimization framework. In CASCON ’99: Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative
research, page 13. IBM Press, 1999.

167

[67] D. Van Horn and H. G. Mairson. Deciding kcfa is complete for exptime.
SIGPLAN Not., 43(9):275{282, Sept. 2008.

[68] G. Wiki. http://gcc.gnu.org/wiki/History. Visited march 2012.

[69] Wikipedia. http://en.wikipedia.org/wiki/P-code_machine. Visited
August 2012.

168

