Danish University Colleges

Mens mobile health

Effect of health mobile apps to men with short-term or no studies during a 6 months intervention study

Levisen, Vinie Diana Hvidbak; Castaño, Francisco Mansilla; Jensen, Camilla Skovbjerg

DOI: 10.1093/eurpub/ckw175.077

Publication date: 2016

Document Version
Post-print: The final version of the article, which has been accepted, amended and reviewed by the publisher, but without the publisher’s layout.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 17. Dec. 2018
Men`s mobile health: Effect of health mobile apps to men with short-term or no studies during a 6 months intervention study

Authors: Vinie Diana Hvidbak Levisen, RN, MLP. Knowledge Center for Health Promotion, University College South Denmark.
Francisco Mansilla Castaño, PhD, Associated professor Medical laboratory technologist degree program, University College South Denmark.
Camilla Skovbjerg Jensen, assistant professor, cand.scient.san.publ, University College South Denmark.

CONCLUSION
• We present evidence that Health mobile apps affect the physical activity trends of men with short-term or no studies. This effect is increased when the individuals undergo preliminary and final physical condition measurements.
• The apps tend to modify the men’s way of thinking more than their doing.
• Health-promotion sms sent to these men every two weeks seem to increase the frequency on which they both think and do something about their health.
• Reporting the number of steps every fourth week makes these men think more about their own health.
• These men had a significant increase in muscle mass and oxygen uptake after the intervention process. In addition, there is a tendency to increase their median number of steps per day, rest heart rate, body fat and fitness rating.
• In contrast, their BP increased slightly.

BACKGROUND
- Mobil app. promote number of steps
- Men`s health depends of their education
- Men die 4-2 years before women
- Men don’t think about their health
- Health promotion without professional contact
- Meet the man where he is – at work
- Men turn too late professional assistance

METHOD
Clinical control trial flow-chart

Control group n = 35

intervention group n = 33

SMS x 10
Mail steps
VAS x 5

Baseline

Intervention 6 months

RESULTS

Fig 1. Effect of intervention on VAS doing and VAS thinking

The study showed:
• Men’s thoughts and action increases
• Better match between thinking and doing

Table 1: Measurement of cardiovascular parameters at baseline and effect points

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group n=35 Baseline</th>
<th>Effect</th>
<th>p-value</th>
<th>Intervention group n=33 Baseline</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP systolik (mm Hg)</td>
<td>142,94</td>
<td>139,00§</td>
<td>0,13</td>
<td>134,00</td>
<td>136,00</td>
<td>0,09§</td>
</tr>
<tr>
<td>BP distolik (mm Hg)</td>
<td>90,00§</td>
<td>88,00§</td>
<td>0,56</td>
<td>83,76</td>
<td>86,36</td>
<td>0,03§</td>
</tr>
<tr>
<td>RHR (bpm)</td>
<td>64,00§</td>
<td>67,00§</td>
<td>0,99</td>
<td>66,85</td>
<td>65,12</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Table 2: Measurement of physical parameters at baseline and effect points

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group n=35 Baseline</th>
<th>Effect</th>
<th>p-value</th>
<th>Intervention group n=33 Baseline</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness rating (ml/min/Kg)</td>
<td>33,00</td>
<td>33,66</td>
<td>0,39</td>
<td>36,03</td>
<td>37,18</td>
<td>0,068</td>
</tr>
<tr>
<td>Oxigen uptake (Vo2) (l/min)</td>
<td>2,85</td>
<td>2,93</td>
<td>0,21</td>
<td>3,89</td>
<td>3,22</td>
<td>0,03§</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>14,90§</td>
<td>19,10§</td>
<td>2,10</td>
<td>17,46</td>
<td>16,43</td>
<td>0,06</td>
</tr>
<tr>
<td>Muscle mass (Kg)</td>
<td>67,80</td>
<td>67,30</td>
<td>0,46</td>
<td>67,90</td>
<td>68,81</td>
<td>0,02§</td>
</tr>
</tbody>
</table>

Effect of health mobile apps to men with short-term or no studies during a 6 months intervention study

The apps tend to modify the men’s way of thinking more than their doing.

These men had a significant increase in muscle mass and oxygen uptake after the intervention process.

Table 1: Measurement of cardiovascular parameters at baseline and effect points

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group n=35 Baseline</th>
<th>Effect</th>
<th>p-value</th>
<th>Intervention group n=33 Baseline</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP systolik (mm Hg)</td>
<td>142,94</td>
<td>139,00§</td>
<td>0,13</td>
<td>134,00</td>
<td>136,00</td>
<td>0,09§</td>
</tr>
<tr>
<td>BP distolik (mm Hg)</td>
<td>90,00§</td>
<td>88,00§</td>
<td>0,56</td>
<td>83,76</td>
<td>86,36</td>
<td>0,03§</td>
</tr>
<tr>
<td>RHR (bpm)</td>
<td>64,00§</td>
<td>67,00§</td>
<td>0,99</td>
<td>66,85</td>
<td>65,12</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Table 2: Measurement of physical parameters at baseline and effect points

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group n=35 Baseline</th>
<th>Effect</th>
<th>p-value</th>
<th>Intervention group n=33 Baseline</th>
<th>Effect</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness rating (ml/min/Kg)</td>
<td>33,00</td>
<td>33,66</td>
<td>0,39</td>
<td>36,03</td>
<td>37,18</td>
<td>0,068</td>
</tr>
<tr>
<td>Oxigen uptake (Vo2) (l/min)</td>
<td>2,85</td>
<td>2,93</td>
<td>0,21</td>
<td>3,89</td>
<td>3,22</td>
<td>0,03§</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>14,90§</td>
<td>19,10§</td>
<td>2,10</td>
<td>17,46</td>
<td>16,43</td>
<td>0,06</td>
</tr>
<tr>
<td>Muscle mass (Kg)</td>
<td>67,80</td>
<td>67,30</td>
<td>0,46</td>
<td>67,90</td>
<td>68,81</td>
<td>0,02§</td>
</tr>
</tbody>
</table>

Effect of health mobile apps to men with short-term or no studies during a 6 months intervention study

The apps tend to modify the men’s way of thinking more than their doing.

These men had a significant increase in muscle mass and oxygen uptake after the intervention process.