Danish University Colleges

Transfer Promoting Simulation in Education for High Technology Professions

Dellgren, Anja Dalsgaard

Publication date: 2019

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 16. Jun. 2021
Introduction

The didactic strategy for teaching laboratory skills at the Faculty of Health Sciences, UCL University College, Denmark, should in the future be based on real life simulation more than just practical exercises. Programs such as Biomedical Laboratory Science and Radiography are both targeted towards high technology professions. The high-tech equipment can challenge simulation in the teaching laboratories when the equipment in these laboratories differs significantly from the equipment used in clinical practice. This challenge can create far transfer. Far transfer occurs when actions must be transferred between two situations that are relatively different. Far transfer requires extra attention to the didactic approach, as students may find it difficult to identify identical elements between the two situations, which is necessary to create transfer. Therefore there is a need for changing the current practice in the teaching laboratory towards being more simulation based and include initiatives that support far transfer.

New learning activities is therefore to be linked to the current practical exercises in the teaching laboratories of the faculty by adjusting them to be more simulation based rather than just practical exercises.

Objective

The aim of this project was to develop a new didactic educational concept to increase transfer promoting simulation of the work of high technology clinical praxis performed in teaching laboratories. The educational concept was to be based on a didactic model accompanied by a guide for didactic reflections.

Method

Through a literature search, we located a relatively small amount of literature dealing with simulation in settings with far transfer due to a high technology profession. Due to the amass amount of literature focus group interviews with students from Biomedical Laboratory Science and Radiography were chosen in order to clarify challenges and possible solutions. The three elements of the concept have therefore emerged through the work with existing knowledge about simulation and transfer as well as the knowledge related to the students’ experiences. To operationalize the didactic model (the triangle), we developed an action-oriented reflection guide (the table) to support the teacher’s development of transfer promoting simulation. By combining the model and the instrument an action-oriented didactic concept is obtained.

The educational concept

We have developed an educational concept entitled Transfer Promoting Simulation. The educational concept is based on the interaction between “Making experiences”, “Professional setting”, and “Memorable reflections” as illustrated in the didactic model (the triangle). The concept is meant to increase the value of student learning when simulation is used as a method, in situations where the content is not directly transferable to the technology and workflow used in clinical praxis. The accompanying reflection guide (the table) is a toolkit to be used in adjusting existing practical exercises to achieve more simulation-based activities. One need not answer all the questions, but only choose those that seem relevant in the specific situation. Furthermore it is also important to bear in mind that the further along the students are the more they are able to reflect and go beyond the concrete action in the laboratory (4,5).

Examples of adjustments

A practical exercise in absorption photometry with first semester Biomedical Laboratory Science students. The exercise deals with analyzing copper sulphate solutions on a simple single beam spectrophotometer.

Adjustments:

- Making a case were the students pretend that the copper sulphate solutions are calibrators, controls, and patient plasma samples meant for albumin analyzing. The students have shortly before worked with albumin in their curriculum.
- The concentration of the calibrators and controls were fictively adjusted to fit the physiological level of albumin.
- As preparation the students watch a video about the equipment used in clinical praxis (Cobas 8000 clinical chemistry module)

A practical exercise in polymerase chain reaction (PCR) with fifth semester Biomedical Laboratory Science students. The exercise deals with analyzing CML-patients for the t(9:22) translocation.

Adjustments:

- To sharpening the students focus on the risk of contamination and how to handle it two approaches were made: Different areas of the teaching laboratory was assigned to a pre- and post-PCR area and the students were instructed to introduce errors in the procedure.
- Include reflections concerning the entire workflow from blood sample to the analytical answer this should strengthen the student ability to identify similar processes in clinical praxis.
- Emphasizing the differences in the process in the teaching laboratory to the more automated process in clinical praxis.

Literature