

Danish University Colleges

Regular Expressions, State Machines, State Pattern

Nordbjerg, Finn Ebertsen

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Nordbjerg, F. E. (2016, Mar 1). Regular Expressions, State Machines, State Pattern.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Download policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Dec. 2024

https://www.ucviden.dk/en/publications/5ab611d1-565d-439f-ae85-a6732177da2e

UCN/IT Programmes FEN 2016-03-01

1

Lecture Note

Regular Expressions

State Machines

State Pattern

 Finn E. Nordbjerg

UCN/IT Programmes FEN 2016-03-01

2

Contents
Contents ... 2

1 Regular languages and regular expressions ... 3
1.1 Example: Unsigned integers ... 3
1.3 Exercise: Decimals, scientific notation and identifiers 4
1.4 Regular expressions in Java ... 4

1.5 Exercise: Using java.reg.ex ... 5
2 State machines ... 6

2.1 Example: A state machine that accepts signed integers: 6
2.2 State machines and regular expressions .. 7
2.3 Exercise: State machine that accepts decimal .. 7

2.4 Implementing state machines: State Pattern ... 7
2.5 Example: State pattern and signed integer ... 8
2.6 Critique of the design .. 10

2.7 Exercise: State pattern and decimals .. 10
2.8 Alternative design .. 11

2.9 Example: Controlling a printer ... 11
2.10 Exercise: Extending the printer controller .. 13

3 Code samples (demos) ... 14

4 References .. 14

UCN/IT Programmes FEN 2016-03-01

3

1 Regular languages and regular expressions

Regular languages (or regular expressions) are a family of formal languages with a
simple structure. They are among others useful for string matching, for instance input
validation (e-mail addresses, dates, URLs etc.), for parsing protocols and much
more.

As all formal languages, regular languages are defined over some finite alphabet
(character set). All valid expressions in a regular language must be constructed
using only concatenation, selection and iteration of symbols in the alphabet of the
languages. This means that regular expressions cannot have nested parenthesis,
nested blocks etc.

Examples of regular languages are valid integers, valid decimals and valid identifiers
in a programming language like Java, or valid email addresses, valid URLs or valid
IP-addresses. On the other hand, arithmetic expressions cannot be defined as
regular expressions (nested parenthesis), either can programming languages like
Java (nested ‘{---}’ code blocks).

Most modern programming languages include libraries to handle regular expressions
(for instance java.util.regex – see [1]).

Formally, a regular language over some alphabet can be defined as the set of strings
of symbols from the alphabet that can be formed from the corresponding regular
expression. A regular expression r over some alphabet is defined by:

1. r = //empty
2. r = a // a is a symbol from the alphabet
3. r = st //concatenation of two regular expressions, s and t
4. r = s | t //selection between two regular expressions s and t (“s or t”)
5. r = (s)* //iteration: 0 or repetitions of the regular expression s

Note that the definition is recursive; rule 1 and 2 constituting the base case.

1.1 Example: Unsigned integers

If we want to define the unsigned integers using a regular expression, the alphabet
could be:

 [0-9] //one of the characters ‘0’ to ‘9’

[0-9] is a shorthand for the regular expression 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

Then unsigned integer may be defined as:

UCN/IT Programmes FEN 2016-03-01

4

 unsignedInteger:

 [0-9]([0-9])*

In other words: An unsigned integer is a digit followed by zero or more digits.
We can enhance the regular expression so that signed integers are defined:

 signedInteger:

 (+ | -)[0-9]([0-9])*

If we still what to include unsigned integers, we may use the empty expression, and
write:

 signedInteger:

 (| + | -) [0-9]([0-9])*

This regular expression defines integers as 123, +123 and -123.

(Is 0123 also allowed?)

1.3 Exercise: Decimals, scientific notation and identifiers

a) Write a regular expression that defines decimals (for instance, -123.456).
b) Write a regular expression that defines numbers in scientific notation (for

instance, 123456.789 can be written as 1.23456789 E+5 using scientific
notation).

c) Write a regular expression that defines valid Java identifiers (recall that an
identifier is a string that can be used as a name, for instance for a class, a
method or a variable)

1.4 Regular expressions in Java

For practical purposes this very simple notation is often enhanced, for instance (r)+
is used meaning 1 or more repetitions of r, and (r)? is used meaning 0 or 1
occurrences of r.

When using regular expressions always check the notations used in the API, you are
going to use in the case of Java check the documentation to java.util.regex ([2]).

For instance, in Java notation valid signed integers may be defined by this regular
expression (pattern):

UCN/IT Programmes FEN 2016-03-01

5

 String numberPattern = "^(\\+|-)?[0-9]+$";

The enclosing ‘^’ and ‘$’ mean that there is not allowed anything else in the string to
be validated. The backslash (’\’) before the ‘+’ is used to tell that we mean the
symbol ‘+’, not the meta symbol ‘+’ (meaning 1 or more). So ‘\+’ means the symbol
‘+’ to java.util.regex. The second backslash is necessary in order to escape the in the
Java string (so meta symbols are escaped to java.util.regex using ‘\’ and the ‘\’ is
escaped to Java strings using the second ‘\’. In total a symbol that is also used as a
meta symbol (like ‘+’) must be prefixed with two backslashes in the Java string.

See demo: RedExDemo.

Java provides the java.util.regex package for pattern matching with regular
expressions. The java.util.regex package primarily consists of the following three
classes:

• Pattern Class: A Pattern object is a compiled representation of a regular
expression. To create a pattern, invoke one of its public static compile
methods, which will then return a Pattern object. These methods accept a
regular expression as the first argument.

• Matcher Class: A Matcher object is the engine that interprets the pattern and
performs match operations against an input string. You obtain a Matcher
object by invoking the matcher method on a Pattern object.

• PatternSyntaxException: A PatternSyntaxException object is an unchecked
exception that indicates a syntax error in a regular expression pattern.

(From [1] also see and [4]).

The APIs (including java.util.regex) also provides methods to extract all substrings in
a string that matches a given regular expression (see the documentation).

1.5 Exercise: Using java.reg.ex

a) Create Java programs that check some of the regular expressions from
exercise 1.2.

b) Define regular expressions to check valid URLs and email addresses
c) Write a Java program that can all extract URLs and/or email addresses from

any text (a string).

UCN/IT Programmes FEN 2016-03-01

6

2 State machines
Another way of checking if a string matches a regular expression is to build a state
machine that recognises the regular language.

A state machine is a set of input (e.g. symbols, events), a set of states and a
transition function that takes a state and an input as argument and returns next state.
(A state machine is sometimes called a DFA: Deterministic Finite Automaton).

Often, a state machine is given graphically as a state diagram (a digraph), where
states are represented by nodes and transitions by edges. Transitions (edges) are
labelled with input.

2.1 Example: A state machine that accepts signed integers:

For example, a state machine that recognises (accepts) signed integers:

Using this graph, a string of input symbols is checked using this algorithm:

currentState= Start;
currentInput= first symbol in the input string;
while not Eotxt and not State == Error do

if there exists an edge from currentState marked with currentInput
then currentState= the state pointed to by that edge

currentInput= next symbol in the input string
else

currentState= Error;
endif;

endwhile;
if currentState = Error then error in input string else input string ok endif

So, the state machine is passed a string with input symbols and will determine, if that
string is a valid signed integer or not.

UCN/IT Programmes FEN 2016-03-01

7

It starts in the start state. From the current state and the current input symbol a
transition to the next state is chosen. This continues until Error or EndState is
reached.

2.2 State machines and regular expressions

There is a one-to-one correspondence between state machines and regular
expressions: every string defined by a regular expression may be accepted by a
state machine (and visa verse). Given a regular expression, it is possible to
automatically construct a state machine that accepts strings defined by that regular
expression (see [5]). This is actually what is used in the APIs (as java.util.regex).

2.3 Exercise: State machine that accepts decimal

Construct (state diagram) a state machine that accepts:

a) Decimal numbers
b) Scientific numbers
c) Identifiers

(cf. exercise 1.3).

2.4 Implementing state machines: State Pattern

Next state is defined by as a function taken current state and current input as
arguments and returning next state. Often the possibility of associating an action with
the transition (or the state) is added to the state machine.

Different approaches to implementing this are possible. We shall focus on an object-
oriented approached called State Pattern.

The core of the pattern is that a general state is an abstract class defining the
transition function (and, if relevant, the action as well) as abstract methods. The
actual states are classes that inherit from the abstract class and implement the
abstract methods according to possible input, transitions from the state and actions
associated with the state.

The design is shown by this UML class diagram (from [6]):

UCN/IT Programmes FEN 2016-03-01

8

The interface to the state machine is the class Context. It holds the states of the
state machine. The concrete states are all subtypes of the abstract class State. State
defines the abstract methods for handling transitions and actions (if any), here
represented by Handle(). The concrete states are represented by classes
(ConcreteStateA and ConcreteStateB) that inherit from State and implement the
abstract methods. The Context class holds a reference of type State (currentState)
that references the actual state. Note how polymorphism allows currentState to
reference all the subtypes of State. For deeper description of State Pattern, see [7].

2.5 Example: State pattern and signed integer

Now, let’s use the pattern to implement the state machine that recognises signed
integers (the context is called Scanner because software that recognises strings of
different patterns in compilers is called a scanner).

In order to implement the integer scanner we will need the abstract class State and
five concrete classes representing the states of the machine. Below we have a class
diagram (UML) and the state diagram.

The code for State looks like this:

public abstract class State {

 //returns next state
 abstract public State transition(char c);

//in case there are any actions connected to a transition
 //abstract public void action(char c);

}

Input symbols are simple chars.

UCN/IT Programmes FEN 2016-03-01

9

The concrete states have references to the states to which they are directly
connected, and they implement transition() (and, if any, action()).

For instance is UnsignedInt implemented like this:

public class UnsignedInt extends State {
 private State uSign, end, err;

public void setTransitions(State uSign, State end, State err){
this.uSign= uSign;
this.end= end;
this.err= err;

 }

 @Override

public State transition(char c){
if (c == '\0')

 return end;
 else if ('0' <= c && c <= '9')
 return uSign;
 else
 return err;
 }

}

The class Scanner holds the machine: It has references to the concrete states:

public class Scanner {
private Start start;
private UnsignedInt uSign;
private SignedInteger sign;
private Error err;
private EndState end;

The constructor sets up the machine:

public Scanner(){
 start = new Start();

uSign = new UnsignedInt();
sign = new SignedInteger();
err = new Error();
end = new EndState();
start.setTransitions(uSign, sign, err);
uSign.setTransitions(uSign, end, err);
sign.setTransitions(uSign, err);

}

The central scanner loop (section 2.1) is implemented by this method in class
Scanner:

UCN/IT Programmes FEN 2016-03-01

10

public boolean scan(String input){
//input.length()>0
boolean ok = false;
int i = 0;
State currState = start;
while (currState != end && currState != err) {

char nextChar;
if (i == input.length())

nextChar = '\0';
else

nextChar = input.charAt(i);
//currState.Action();
currState = currState.transition(nextChar);
i++;

}
if (currState == end)

ok = true;
return ok;

}

See the demo: IntegerScanner.

2.6 Critique of the design

This implementation works fine, if the states and transitions are rather static (as in
recognising regular expression), but if new states and transitions may be added
during the lifetime of the program, the implementation is vulnerable. A lot of small
pieces of code must be added and change in many different classes. This makes
maintenance difficult. Try to do the following exercise and see how many additions
and changes you have to do:

2.7 Exercise: State pattern and decimals

Implement a state machine that recognises decimal numbers. Use your solution to
exercise a) in section 2.3 or this diagram:

UCN/IT Programmes FEN 2016-03-01

11

Make a copy of the demo (IntegerScanner) from section 2.5, and modify that in your
solution. Note how many different places in the existing code, you have to add or
change code.

2.8 Alternative design

A better design would be, if state and transition handling could be isolated, so adding
new states and transition wouldn’t require changes in the existing concrete state
classes. If states and transition are handled by the abstract class State and inherited
by the concrete states, then we will still need to add the new states, but adding and
changing transitions could be isolated to the context class.

We will illustrate this by an example (which, by the way, has nothing to do with
scanning). This example illustrates another area of usage of state machines:
Regulation and control.

2.9 Example: Controlling a printer

The following example is based on [8].

A simplified control for printer could be done by this state machine:

Transitions are mark with events that may occur during the operation of the printer,
either as user input or as events from the printer itself.

If the state pattern is used to implement this state machine, we will get the following
classes:

 State (abstract)

 Start

 Ready

 Printing

 End

 PrinterController (the context class)

UCN/IT Programmes FEN 2016-03-01

12

In order to simulate the actual printer, events are simply defined as this enum in the
context class (PrinterController):

enum Events { print, goReady, done, cancel, readyToPrint, unknown };

The handling of transitions is implemented as a Map in the abstract class State:

public abstract class State {

private Map<Events, State> adjacents;

public State() {
adjacents = new TreeMap<Events, State>();

}

public Map<Events, State> getAdjacents() {
return adjacents;

}

public void addTransition(Events e, State s) {
adjacents.put(e, s);

}

This map is inherited by every concrete state, so in this way each concrete state has
a map that associates an event with the next state corresponding to this event.

The transition function may be implemented in State leaving only action() abstract:

//get next state
public State transition(Events e) {

return getAdjacents().get(e);
}
//Actions associated with the concrete state
public abstract void action();

}

The machine is (as before) constructed by the constructor of the context class
(PrintController). The context class also (as before) defines the concrete states:

class PrintController {
private Start start;
private Printing printing;
private Ready ready;
private End end;

public PrintController() {

start = new Start();
printing = new Printing();
ready = new Ready();
end = new End();

UCN/IT Programmes FEN 2016-03-01

13

start.addTransition(Events.readyToPrint, printing);
start.addTransition(Events.cancel, end);

printing.addTransition(Events.cancel, end);
printing.addTransition(Events.done, end);

ready.addTransition(Events.print, start);

end.addTransition(Events.goReady, ready);

}

The rest of the design remains the same. See the demo: PrinterStates.

2.10 Exercise: Extending the printer controller

Add a new event that may occur during printing: “Paper Jam”. The event can occur
in the state “Printing” and brings the printer in an error state where it remains
stopped.

The new state machine could be described by this diagram:

Make a copy of the demo PrinterStates and modify the code in order to implement
the machine above.

Note how many places you have to add or change code. Compare to section 2.7 and
reflect.

UCN/IT Programmes FEN 2016-03-01

14

3 Code samples (demos)

1. RegExDemo
2. IntegerScanner
3. PrinterStates

4 References
[1]: http://www.tutorialspoint.com/java/java_regular_expressions.htm (accessed

26-02-2016).

[2]: https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

(accessed 24-02-2016)

[3]: http://www.tutorialspoint.com/java/java_regular_expressions.htm (accessed

26-02-2016).

[4]: http://www.sw-engineering-candies.com/blog-

1/howtofindvalidemailaddresswitharegularexpressionregexinjava) (accessed
26-02-2016).

[5]: Kenneth C. Louden: Compiler Construction. Principles and Practice. PWS

Publishing Company 1997. ISBN 0-534-93972-4.

[6]: http://www.dofactory.com/net/state-design-pattern (accessed 26-02-2016).

[7]: Mark Grand: Patterns in Java, Vol. 1. Wiley 1998. ISBN 0-471-25839-3

[8]: http://www.go4expert.com/forums/showthread.php?t=5127 (accessed 27-02-

2016).

http://www.tutorialspoint.com/java/java_regular_expressions.htm
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://www.tutorialspoint.com/java/java_regular_expressions.htm
http://www.sw-engineering-candies.com/blog-1/howtofindvalidemailaddresswitharegularexpressionregexinjava
http://www.sw-engineering-candies.com/blog-1/howtofindvalidemailaddresswitharegularexpressionregexinjava
http://www.dofactory.com/net/state-design-pattern
http://www.go4expert.com/forums/showthread.php?t=5127

